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Abstract

We present T2, a second generation sensor network oper-
ating system written in the nesC language. We describe
why the limitations and problems of current OSes ne-
cessitate a new design. T2 improves on current systems
in three areas: platform support, application construc-
tion, and reliability. We argue that existing systems ne-
glected these properties in order to maximize flexibility.
In contrast, T2 limits flexibility to that which applica-
tions need, and leverages these constraints to improve
the rest of the system. We evaluate T2 in comparison to
TinyOS, and show how its structure simplifies applica-
tions, makes porting to a new platform much easier, and
improves system reliability. From these results, we dis-
cuss the frictions present in component-based OSes and
how T2’s design and structure makes dealing with them
more tractable.

1 Introduction
Sensor networks defy traditional system boundaries.
Their resource tradeoffs and applications lead to a de-
sign space where the end to end principle does not hold,
nodes are single-use rather than multitasking, and col-
laborative rather than independent operation is the norm.
The uncertainties of this new design space have led to
exploratory research that spans hardware [3, 12, 22], net-
work protocols [17, 36, 37], and applications [18, 28,
27]. While it is clear that the abstractions and boundaries
of other domains might not be not suitable, this raises the
obvious question: which ones are?

Facing a huge design space filled with uncertainty,
sensor node operating systems such as TinyOS [15]
and SOS [10] maximize system flexibility. The lim-
ited resources of long-lived, battery-operated sensor
nodes (especially RAM) lead these systems to adopt
software components for efficient yet flexible composi-
tion. TinyOS, for example, is little more than a non-
preemptive scheduler; applications are built from large
libraries of components. SOS pushes flexibility even fur-

ther, allowing applications to dynamically add and re-
place components at runtime. Their flexibility has given
tremendous freedom to researchers and developers, plac-
ing few barriers to innovation and investigation.

But flexibility has a cost. To be efficient, a compo-
nent must make assumptions about its use. Handling ev-
ery possibility requires a lot of code and state. When
applications can compose components arbitrarily, how-
ever, situations will arise that violate these assumptions.
Rather than simply combining components, building an
application is a lengthy process of discovering and de-
bugging all of the unforeseen interactions between them.
Incorporating new hardware or using a new platform ex-
acerbates these challenges. As there is no standard API,
it is unclear exactly what it means to port the OS. Appli-
cations depend on a huge range of component libraries,
porting all of them is unfeasible, and the lack of bound-
aries makes it unclear which ones are part of the OS.

Additionally, newer hardware resources have demon-
strated ways in which the common sensor OS schedul-
ing policy – best effort, non-preemptive deferred proce-
dure calls – is a basic source of system failure. On the
one hand, an OS can recover through periodic reboot-
ing, watchdog timers, or grenade timers. On the other,
an OS whose basic mechanisms are liabilities is not very
appealing.

These three limitations – application complexity, the
high cost of porting to a new platform, and reliability
– are not a fault against the operating systems’ design-
ers. Instead, the growth and maturation of sensor sys-
tems has made some requirements more important and
others less so. The community now has a much greater
understanding of what abstractions and boundaries a sen-
sor OS must provide.

In this paper, we describe T2, a second-generation sen-
sor node operating system. T2 builds on five years of
community experience with sensor systems, constrain-
ing system flexibility to that which applications need.
An overallcomponent architecturelimits how users can
combine components, allowing T2 to improve reliability,



provide better support for platform diversity, and sim-
plify application development.

Four design principles guide T2’s component architec-
ture. These principles allow the OS to achieve its goals
without sacrificing efficiency. The first istelescoping ab-
stractions. T2 abstractions are logically split across hard-
ware devices and have a spectrum of fine-grained lay-
ers. The highest layers are the most simple and portable,
while the lowest allow hardware-specific optimization.
The second ispartial virtualization. Some abstractions,
such as basic timers, are virtualized, while others, such
as buses, are not. The decision between the two de-
pends on an abstraction’s requirements and usage model.
The third isstatic binding and allocation. In T2, every
resource and service is bound at compile time and all
allocation is static. As we discuss in Section 2, even
statically-oriented TinyOS sometimes uses dynamic al-
location, and this turns out to be a significant source of
failure. The fourth and final design principle in T2 is the
use ofservice distributions. A service distribution is a
collection of components that are intended to work to-
gether, providing a unified and coherent API.

T2 is an evolution of TinyOS. It is component-based,
is written in nesC, has a single thread of control, and uses
non-blocking calls. However, although similar at a high
level, T2 differs in almost every detail. It has a more
restrictive concurrency model, a different boot sequence,
different interfaces, as well as many design patterns and
architectures absent in its predecessor. When it comes to
reliability, the proverbial devil is in the details, and we
have designed T2 accordingly.

This paper has three research contributions. First, it
identifies limitations in TinyOS and other major embed-
ded sensor OSes. Second, it defines four design prin-
ciples to address these problems and gives examples of
their use. Third, we believe the problems we identified
are fundamental — a natural result of software compo-
nents — and that they should be general considerations
for component-based systems.

Section 2 describes current sensor network OSes and
outlines their limitations. Section 3 presents the four
design principles T2 applies to address these problems.
Sections 4, 5 and 6 describe the T2 core, timer system,
and communication stacks, providing examples of how
and when T2 uses these principles. Section 7 evaluates
T2, in terms of reliability, portability, code complexity,
resource utilization, and performance, comparing it to
TinyOS as appropriate. Section 8 examines related work.
Finally, based on the evaluation, we discuss the implica-
tions and lessons of T2’s design in Sections 9 and 10.

2 Background
In this section, we describe TinyOS, the dominant sen-
sor network operating system, along with the nesC pro-

gramming language. We present several situations where
TinyOS, despite its success, could use improvements.
Our inspection of other sensor OSes (MOS [1] and
SOS [10]) show they suffer from similar problems. For
simplicity, we use TinyOS as the running example and
defer discussing these similarities to Section 8.

2.1 TinyOS

TinyOS is an operating system for tiny, embedded, and
networked sensors (“motes”), which have 4-10 kilobytes
of RAM, a 4-8 MHz 8 or 16 bit CPU, and low power
radios with bandwidth of 20-250kbps. As these nodes
need to last unattended for long periods, energy is very
valuable, leading nodes to sleep most of the time. RAM
is usually the limiting software resource.

TinyOS is a component-based, event-driven OS. No
call in TinyOS blocks. Instead, a call to start a lengthy
operation returns immediately, and the called component
later signals when the operation has completed. Opera-
tions are therefore split-phase. In this way, every com-
ponent acts like a piece of hardware which issues an in-
terrupt when operations complete. The TinyOS concur-
rency model is based on tasks, which are non-preemptive
deferred procedure calls. Components can post tasks to
the scheduler for later execution. The TinyOS scheduler
has a fixed-length queue that is processes in FIFO order.

All TinyOS code is written in nesC, a C-based compo-
nent language. Programmers build TinyOS application
by connecting sets of components to the TinyOS boot
sequence and to each other.

2.2 The nesC programming language

The nesC language has three abstractions: components,
interfaces, and a concurrency model [8]. Components
are software units consisting of two parts: a specifica-
tion, which states their interfaces, and an implementa-
tion, which states what logic lies behind the interfaces.

Interfaces define a bidirectional relationship between
components: the downcall and upcall of a split-phase
operation are syntactically bound together. In order to
call the downcall (acommand), a component must im-
plement the upcall (anevent). Conversely, a component
can only signal the upcall if it implements the downcall.
Connecting components that implement the two sides of
an interface is calledwiring . As both directions are stat-
ically bound, nesC programs need no function pointers
and the compiler optimizes both call directions heavily.

There are two kinds of components, modules and con-
figurations. They differ in implementation. Modules
have C code and allocate state. In contrast, config-
urations wire other components together and canex-
port their interfaces. Components can be instantiated
at compile-time with constant and type arguments. By
convention in T2, private components end in P and pub-



interface Timer {
command result t start(...);
command result t stop();
event void fired();

}
generic configuration SingleTimerC() {

provides interface Timer;
} implementation {

components TimerC;
Timer = TimerC.Timer[unique("Timer")];

}
module AppP {

uses interface Timer;
} ...C code ...
configuration AppC {}
implementation {

components new SingleTimerC() as MyTimer, AppP;
AppP.Timer -> MyTimer.Timer;

}
AppM

TimerC

SingleTimerC

Timer Interface
Application Component
T2 Component

Figure 1: Sample nesC code and its pictorial representation. AppC
wires the AppP module to the to the Timer interface provided by the
newly instantiated SingleTimerC configuration. SingleTimerC exports
a Timer interface from TimerC, denoted by the pass through connec-
tions (there is no intermediate code).

lic ones in C. Figure1 shows some sample nesC code,
adapted from a TinyOS example to show component in-
stantiation, and a corresponding pictorial representation.

The nesC concurrency model is based on the TinyOS
task abstraction. nesC tasks run atomically with respect
to one another. Tasks have no return value and may
not take parameters: parameters must be stored as fields
of the task’s component. By default, code can only be
called from tasks (and not from interrupts). Most basic
abstractions, such as sending a packet, fall into this cat-
egory. Interrupt handlers can only call code that has the
async keyword. Examples of async functions include
sampling an A/D converter and toggling an LED. The
task/async distinction means that a task must be posted if
an interrupt handler wants to, for example, send a packet
or signal a send completion (neither of which is async).

2.3 802.15.4 and the CC2420

802.15.4 is a recent low power wireless standard [29].
A comparatively high data rate (250kb) at reasonable
power cost (15-20mA) has led many sensor platforms
to adopt it as a data link protocol. The ChipCon 2420
(CC2420) is the dominant 802.15.4 chip.

The CC2420 provides a packet interface. It sig-
nals packet reception by triggering an interrupt. If the
hardware successfully receives a packet it automatically
sends a synchronous data-link level acknowledgment.
The software stack is responsible for reading the received
bytes out of the chip’s memory over a bus. If this mem-
ory overflows, the radio stops receiving packets. A soft-
ware stack sends a packet by writing it to the CC2420’s
memory then sending a transmit command.

This simple hardware interface turns out to have very
complicated repercussions for TinyOS, as described in
the next section.

2.4 TinyOS limitations

Experience has shown us that TinyOS has three basic
limitations: new platform support, application construc-
tion, and reliable operation.

A typical port of TinyOS to a new platform involves
copying a lot of code from an existing one and modi-
fying it where needed. There are hacks to mitigate this
somewhat — a platform can “inherit” from another —
but supporting new combinations of chips is mostly a
case-by-case basis of getting things to work. Addition-
ally, because TinyOS does not define clear abstraction
boundaries, components often directly access hardware
resources. For example, the micaZ implementation of
the CC2420 stack uses a hardware timer for its CSMA
backoffs. A new platform that inherits from the micaZ
must make sure it does not use this timer elsewhere, but
no clear structure defines whether it is being used.

TinyOS applications face failures that stem from com-
ponent composition. Large numbers of components lead
to unforeseen interactions and dependencies. For exam-
ple, on the Telos platform both the CC2420 radio and the
flash storage system share an SPI bus; the pins of this bus
are also used to connect to external sensors. Including
all three in an application requires orchestrating their use
very carefully. For example, if the boot sequence tries to
initialize the radio and flash system simultaneously, one
will fail. Details such as these are the source of many
questions on the TinyOS help list.

The CC2420 radio itself introduces several reliability
challenges for which there are no good solutions. When
the TinyOS CC2420 software handles a packet receive
interrupt, it reads the received packet in over the SPI and
posts a task to signal reception to higher components.
Because the task queue is a shared resource, it is possi-
ble that the post will fail. This raises a host of problems.
The CC2420 hardware successfully received the packet,
so it has sent an acknowledgment. But the radio software
cannot deliver the packet to the application. Retrying the
post requires that someone call into the component again
in the future, and there is no good way to ensure this hap-
pens (earlier stacks for other chips had periodic interrupt
sources). One possibility is using a timer, but the timer
system uses the task queue. Another possibility is to wait
for another receive interrupt, but if the receive memory
overflows, the stack stops delivering interrupts. TinyOS
deals with this problem by dropping the packet, even if
the hardware has acknowledged it.

The problem is even worse for packet transmission.
Because transmission is split-phase, higher level compo-
nents wait for the radio to signal the sendDone() event



before reusing the buffer to send another packet. If the
radio cannot post a task to signal the event, then the
caller can block indefinitely. TinyOS deals with this
problem by breaking its concurrency model: if it cannot
post the task, it signals sendDone() in interrupt context.
This introduces potential bugs: code written to be run in
tasks only (e.g., with no atomic sections) executes asyn-
chronously and might corrupt memory.

Furthermore, this latter problem is not limited to the
radio stack. Any component that signals completion of a
split-phase operation in a task is vulnerable. These fail-
ures can propagate between components, causing higher
level ones to block forever or suffer race conditions.

3 T2 Design Principles
Like TinyOS, T2 is a component-based operating system
written in the nesC language. However, T2 avoids many
of the problems of TinyOS by using a component archi-
tecture based on four design principles. These principles
aretelescoping abstractions, partial virtualization, static
allocation/binding, andservice distributions.

3.1 Telescoping Abstractions

T2 providestelescoping abstractionsin order to satisfy
the requirements of general as well as specialized appli-
cation domains. Telescoping abstractions provide both a
vertical andhorizontaldecomposition. The vertical di-
mension spans an individual subsystem (e.g. communi-
cation stack), where the higher layers are generally hard-
ware independent and provide simple interfaces. Lower
layers, in contrast, can be hardware dependent and pro-
vide more powerful interfaces. The structure of these
abstractions make it clear to a developer where an ab-
straction lies in this spectrum, in case an application
[20]needs to run on multiple platforms.

Horizontal decomposition simplifies porting by allow-
ing reuse of subsystem implementations across different
platforms. Mote hardware is built out of standard chips,
with well-defined physical interfaces. Reflecting these
physical interfaces as platform-independent abstractions
such as buses allows reuse of subsystems corresponding
to these chips across different platforms.

3.2 Partial Virtualization

T2 abstractions fall into three categories. The top lay-
ers of a telescoping abstraction are usuallyvirtual and
shared, as one user of an abstraction is hidden from oth-
ers through software virtualization. This virtualization
simplifies application development. Virtual and shared
abstractions are generally supported with static alloca-
tion (discussed below) through the nesC Service Instance
pattern [7]. The bottom layers of a telescoping abstrac-
tion are usuallyphysical and dedicated, with only one
user of the abstraction.

The third class of abstraction isphysical and shared.
Unlike the two more common classes, which depend on
compile-time mechanisms to virtualize or check needed
properties, physical and shared resources depend on run-
time arbitration. While a user of this class of abstrac-
tion cannot conflict with other users, it must explicitly re-
quest the abstraction before it can use it and must release
it when done. Generally, physical and shared resources
provide the Resource interface, which has commands for
requesting and releasing the abstraction. There are sev-
eral possible policy implementations of the Resource in-
terface, calledarbiters. Examples include round robin
and first-come-first-served.

3.3 Static allocation/binding

Because the nesC compilation model allows full program
analysis, T2 pushes as much allocation and binding to
compile time as possible. This design principle limits
flexibility, but makes many OS behaviors deterministic.
Dynamic approaches are ultimately a bet that certain cir-
cumstances are unlikely (e.g., that every component will
need a piece of state at once). Long lifetimes, large num-
bers, and an uncontrollable environment mean that mak-
ing wagers is unadvisable.

Static allocation means that components allocate all of
the state they might possibly need. If a component needs
to be able to send a packet, it must allocate a packet
buffer. Sometimes, a set of components designed to
work together may never send messages concurrently, so
only one packet buffer is needed. But the maximal state
needed at any time must be statically allocated. Static
binding involves pushing as many interface, parameter,
and function bindings to compile time as possible. If
there are invariants, components and interfaces should
reflect them, rather than leave their checking to runtime.

3.4 Service Distributions

On the one hand, arbitrary component composition gives
a developer a great deal of power and flexibility when
building applications. On the other, it can make build-
ing non-trivial applications time consuming and diffi-
cult, due to unforeseen conflicts and interactions between
these independent elements. Because T2 components
need to be usable in a wide range of application domains,
they tend to provide only basic mechanisms and leave
policies up to higher level code. Pushing all of this com-
plexity into applications increases their complexity. For
example, determining when a component is powered on
is often left up to the application.

T2 improves reliability and simplifies application-
level development withservice distributions. A service
distribution has a set ofservice componentsthat define
and provide its abstractions as services. An application
wires only to service components, limiting flexibility but



Platform MCU Buses Radio Flash

eyesIFX [11] MSP430
UART/SPI/I2C0,
UART/SPI/I2C1

TDA5250 at45db

ScatterWeb [25] MSP430
UART/SPI0,
UART/SPI1

TR1001
microchip
24xx64

imecCube [33] MSP430
UART/SPI0,
UART/SPI1

nRF2401

Telos [22] MSP430
UART/SPI/I2C0,
UART/SPI/I2C1

CC2420 stm25p

WISAN [24] MSP430
UART/SPI/I2C0,
UART/SPI/I2C1

CC2420

iMote2 PXA27X
UART0, UART1,
SPI0, SPI1, I2C

CC2420 strataflash

micaZ [14] Atmega128
UART0, UART1,
SPI, I2C

CC2420 at45db

mica2 [34] Atmega128
UART0, UART1,
SPI, I2C

CC1000 at45db

BTnode [2] Atmega128
UART0, UART1,
SPI, I2C

ZV4002,
CC1000

sst39

evb13192 [6] HCS08
UART0, UART1,
SPI, I2C

MC13192

Table 1: Typical WSN platforms and their hardware components.
These 10 platforms use 4 different microcontollers, 7 different radios,
and 5 different storage chips: there are many possibilities for reuse.

HIL The Hardware Independent Layer provides general, cross-

platform abstractions, such as packet transmission and timers.
HAL The Hardware Abstraction Layer has usable abstractions that

provide the capabilities of the underlying hardware resources,
which are usually richer than the HIL.

HPL The Hardware Presentation Layer is a thin layer of nesC code
on top of the raw hardware, such as pins, interrupts and registers.

Table 2: The Hardware Abstraction Architecture layers.

increasing reliability. A distribution has internal compo-
nents that wire underlying implementations in a manner
that ensures they will work properly. Finally, a service
distribution establishes coherent policies across its ser-
vices so that the application does not have to.

4 T2 Core
In this section, we describe the three core parts of the T2
operating system. The first is how it structures applica-
tion code, chip-specific code, and platform-specific code.
The second is its boot sequence. The third is its sched-
uler. We conclude with a brief presentation of OSKI,
T2’s first service distribution.

4.1 Decomposition

Table 1 shows a sample of current sensor network plat-
forms and their important hardware components. Al-
though there is a lot of diversity, there are also com-
monalities. For example, the micaZ, Telos, and iMote2
all share a common radio, the CC2420, while the Telos,
WISAN, eyesIFX, ScatterWeb, and imecCube all share a
common microcontroller, the MSP430.

In prior work, we proposed the Hardware Abstraction
Architecture (HAA) to decompose the functionality of
an individual subsystem, such as MCU timers [11]. The
HAA breaks a hardware abstraction into three layers, de-
scribed in Table 2. The commonalities across platforms,
however, mean that in addition to theverticaldecomposi-

AppM

CC2420
Radio Stack

TimerMilliC
MicaZ Component
Chip Component

ActiveMessageC

Atmega128
Timer Stack

Application Component

CC2420AlarmC

32kHz Timer
Millisecond Timer 
Communication

Figure 2: The T2 chip/platform decomposition. The CC2420 software
depends on a physical and dedicated timer. The micaZ platform code
maps this to a specific Atmega128 timer.

tion of the HAA, T2 needs ahorizontaldecomposition to
promote subsystem reuse. To this aim, T2 introduces the
concept ofchips, self-contained abstractions of a given
hardware chip such as an MCU or radio. Each chip fol-
lows the HAA model, providing a telescoping abstrac-
tion with a HIL implementation at the top.

Platforms are compositions of chips. They use static
binding to connect chip software stacks to the in-
terfaces they require from each other. T2 has HIL
level, microcontroller-independent abstractions of com-
mon bus protocols such as I2C, SPI, and UART. This
enables protocol-specific optimizations; for example, the
SPI abstraction does not have to deal with client ad-
dresses, while the I2C abstraction does. Assuming there
are implementations for each of a platform’s chips, port-
ing T2 requires little more than connecting buses and
other resources through nesC configurations, as shown
in Figure 2.

4.2 Boot Sequence

The T2 boot sequence has five steps, some general to
T2, some platform specific, and some application spe-
cific: initialize the scheduler (T2), initialize hardware
(platform), initialize software (platform + application),
signal boot() to components (application), and run the
main task loop (T2).

Hardware initialization is for very low-level opera-
tions, such as configuring IO pins and calibrating clocks.
As the nesC component model only includes compo-
nents that are actually used, in T2 these components au-
tomatically wire themselves to the boot sequence. Plat-
form components that require a specific initialization se-
quence can incorporate these constraints into their code
and wiring. Initialization is the one time when T2 can
block for more than a few microseconds, as it is rare and
parallelism is rarely desirable.

This boot sequence is different from TinyOS in two
respects. TinyOS both initializes and starts any compo-
nents wired to the boot sequence, and components are
expected to initialize, start and stop any services they de-
pend on. T2 differs in the first respect in that it starts no
components: it just issues a booted event to the top-level
application, which can then power on systems as needed.



T2 differs in the second respect because software ini-
tialization is generally flat. T2 takes this approach be-
cause in TinyOS, general services like timers are ini-
tialized and started many times. This is inefficient and,
in buggy implementations, can lose requests or cause
call loops. Also, the deep init/start/stop semantics cause
many runtime failures. For example, on the Telos plat-
form, stopping the radio to save power also stops the
SPI bus, rendering flash storage inoperable. T2 solves
this problem at lower levels either with the Resource in-
terface (for physical and shared) or with virtualization.
It solves this problem at the application level using ser-
vice distributions, which provide higher-level interfaces
to system services, keeping track of service clients to
provide a coherent power management policy.

4.3 Scheduler

The T2 scheduler is based on the observation that while
TinyOS allows tasks to be posted many times, in practice
they almost never are. Instead, when a task runs it per-
forms all outstanding work. The ability to post multiple
times is unnecessary flexibility that introduces significant
reliability issues. Therefore, T2 tasks have different se-
mantics: a task can always be posted unless it is already
in the queue. The scheduler provides these semantics by
using static allocation to reserve a slot in the queue for
each task. This requires a byte of RAM per task (TinyOS
uses two bytes per entry to store a pointer), but code can
assume that task posting will never fail.

4.4 OSKI

OSKI (OS Key Interfaces) fulfills the two goals of a ser-
vice distribution, simplifying application development
and managing component interactions to improve reli-
ability. OSKI services are virtualized versions of un-
derlying T2 subsystems, and provide a coherent power
management policy. OSKI keeps a statically allocated
bitmask to keep track of which clients are active, ensur-
ing that no service stops prematurely. Bitmasks are more
reliable than reference counts, as they are not affected by
inadvertent multiple starts or stops. Internally, OSKI or-
ders subsystem initialization and parameters, so that all
an application has to do is wire to services and start them
when needed. We present the OSKI API for timers and
communication in Sections 5.2 and 6.3.

5 Timers
In most mote applications, execution is driven solely by
timer events and the arrival of radio messages. Respond-
ing to external stimuli via interrupt requests only makes
sense if the power usage of an always-active hardware
sensor is lower than the cost of polling it with the pro-
cessor. Additionally, energy constraints require that ra-
dios be off most of the time, so timers generally drive the

interface Timer {
command void startPeriodicAt(uint32 t t0, uint32 t dt);
command void startOneShotAt(uint32 t t0, uint32 t dt);
command void stop();
event void fired();

}
interface LocalTime {

async command uint32 t get();
}
interface Alarm <width t > {

async command void startAt(width t t0, width t dt);
async command void stop();
async event void fired();

}

Figure 3: Timer interfaces and components (simplified).

VirtualizeTimerC

TransformAlarmC

Millisecond Counter

Millisecond Timer

AlarmToTimerC

Atm128AlarmP

HIL Component
Timer Library Component
Atmega128 Component

MilliCounterC

Millisecond Alarm
TimerMilliC

HplTimer0C

HPL Timers/Counters

Figure 4: Timer stack on the micaZ and mica2 platforms.

radio. Correspondingly, a critical part of a mote OS is
having a reliable, powerful, and efficient timer system.
This system must provide a standard interface to an arbi-
trary number of timers, to support portable, composable
high-level services. Timer rates vary from a few events
per day to sampling rates of 10kHz or even higher. Fi-
nally the timer system must allow the mote to be placed
in a low-power mode (a fewµA) between timer events.

Mote microcontrollers come with a wide variation of
hardware timers. For instance, the ATmega128 has two
8-bit timers and two 16-bit timers, while the MSP430
has two 16-bit timers. All of these timers come with dif-
ferent clocking options, compare and external event cap-
ture registers, etc. A standard interface cannot hope to
provide a consistent view of this hardware diversity. In-
stead, T2’s timer subsystem follows the telescoping ab-
straction principle. At the top-level are virtualized and
shared timers with a standard, limited interface. These
virtualized timers are statically allocated to different ser-
vices. Underneath, there are microcontroller-specific in-
terfaces to the hardware timers. These timers are phys-
ical and dedicated, e.g., providing the virtual timers, or
doing cycle-counting for benchmarking purposes.

5.1 T2 Timer Subsystem

The Timer interface (Figure 3) provides 32-bit periodic
and one-shot timers. To support accurate timing, these
timers include a starting time (t0). Times and intervals
are 32-bit values whose granularity depends on the com-
ponent providing the Timer interface (see below). The



LocalTime interface allows a component to determine
the current time in terms of a local clock, which can
wrap-around. Values of t0 greater than the current time
refer to the past, not the future.

These interfaces are offered by one or more compo-
nents which expose virtual timers at different time gran-
ularities. T2 platforms must offer a TimerMilliC which
provides a millisecond granularity timer. Platforms may
provide other granularities, e.g., 1/32768s andµs.

A T2 platform must also provide access to each hard-
ware timer using the Alarm interface (Figure 3). The
Alarm interface serves two purposes. First, T2 has a
reusable component library that can build up a full Timer
system from a single Alarm. Second, since Timer is task-
only, it introduces some jitter. Unlike the Timer inter-
face, the Alarm interface is only one-shot and is async.
Applications or components which need low-jitter timer
events (high sampling rates, MAC timers) use an Alarm
interface, and therefore either depend on platform inter-
connect code (e.g., CC2420AlarmC in Figure 2) or are
platform specific. In this latter case, standardizing the
Alarm interface reduces porting effort.

Figure 4 shows the mica family’s timer subsys-
tem. Low-level components (HplTimer[0-3]C) pro-
vide dedicated access to the two 8-bit and two 16-bit
timers of this family’s ATmega128 microcontroller. The
Atm128AlarmP component transforms this low-level in-
terface into an Alarm interface. The T2 timer subsys-
tem is built over the 8-bit timer 0, as it is the only timer
that can run when the ATmega128 is in its low-power
mode. The other hardware timers are available to the
platform or applications; on the micaZ, timer 1 is used
for the CC2420 radio and is exported through the plat-
form CC2420AlarmC component (Figure 2).

5.2 Timers in OSKI

OSKI timers have one fidelity: milliseconds. While
microcontrollers can generally provide higher fidelities
(e.g., 32kHz), some, such as the Atmega128, cannot do
so in an energy efficient manner. Applications obtain a
timer by instantiating an OskiTimerMilliC component,
which offers the Timer interface (Figure 3). As the set
of Timer interfaces implicitly define activity (individual
start/stop), the OSKI timer service has no service-level
start/stop abstraction.

6 Communication
Networking dominates sensor node software. It domi-
nates energy considerations: the high order bit in power
management is turning off the radio. It dominates RAM
considerations: when compiled for the mica2 platform,
the TinyDB system dedicates half of its RAM to packet
buffers and routing tables. Therefore, the interfaces to
and implementation of networking stacks have signifi-

DatamicaZ Packet Buffer Header Footer + MD

 Serial Packet Data

CC2420 Packet Data

Figure 5: A T2 packet buffer. MD is metadata that is not transmitted,
such as acknowledgment reception and timing. The footer box repre-
sents allocation but not necessarily placement. Packets are generally
contiguous, so a short packet may store its footer in the data region.

cant effects on the rest of the system. In this section we
describe two communication stacks and their structure.

While motes are generally purely wireless, most de-
ployed networks have one or more tethered motes that
are connected to a higher power device through their se-
rial port. Tethered motes take one of two forms. They are
either a node running the same software as other nodes,
but which forward data to the serial port instead of the
radio (base stations), or they are nodes that act as trans-
parent serial/radio forwarders (bridges).

Tethered motes, combined with the fact that some plat-
forms have multiple radios [2], means that OS network-
ing abstractions must support cheaply passing packets
between different stacks. The T2 network stacks resem-
ble TinyOS in that they follow azero-copypolicy. T2
achieves this by requiring a platform to define its packet
format. Figure 5 shows the structure of a T2 packet. A
T2 packet has a fixed size data payload which exists at a
fixed offset. Data-link headers and footers are right and
left justified accordingly. This structure allows a node to
receive a packet with one data-link level stack and pass it
another stack that has completely different headers with-
out requiring any data shifts or copies.

The HIL of a data link stack is an active message in-
terface. Layers on top of this interface may introduce
new headers. For example, tree-based collection rout-
ing usually embeds a source address, per-hop destination
address, and a packet sequence number. T2 uses static
binding to allow protocol layering with zero copies. A
layer determines the offset where it can safely write by
calling the Packet interface of the layer below. Since
these relationships are static, nesC collapses several calls
through components into a single constant.

6.1 CC2420 Communication

The problems posed by the CC2420 stack in TinyOS led
us to completely redesign most of its decomposition. In
T2, the majority of CC2420 code is platform indepen-
dent, requiring only four abstractions from a platform:
the interrupts the chip triggers (physical and dedicated),
a capture register for timing (physical and dedicated), an
SPI bus for communicating with the chip (physical and
shared), and a 32khz async timer for CSMA backoff and
acknowledgment timeouts (physical and dedicated). Fig-
ure 6(b) shows this decomposition.

The T2 CC2420 stack uses the Resource interface to
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(a) The telescoping abstraction of the CC2420 radio stack. ActiveMes-
sageC is platform independent and can encapsulate many data link lay-
ers. It is a simple wrapper around CsmaActiveMessageC, which provides
additional CSMA-based interfaces. This sits on top of CC2420RadioC,
which provides 802.15.4 raw packet and configuration interfaces (such as
address decoding).
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(b) A partial decomposition of CC2420RadioC on the micaZ plat-
form. CC2420RadioP uses interfaces that access the chip’s registers
and packet memory through an SPI protocol. It also depends on han-
dling interrupts for events such as packet reception. The micaZ plat-
form code exports the bus and interrupts from Atmega128 abstrac-
tions.

Figure 6: The T2 CC2420 stack.

// TinyOS approach
uses interface Register;
call Register.cmd(CC2420_STXON);
call Register.write(CC2420_MDMCTRL0, modem0Param);

// T2 approach
uses interface CC2420StrobeRegister as STXON;
uses interface CC2420RWRegister as MDMCTRL0;
call STXON.cmd();
call MDMCTRL0.write(modem0Param);

Figure 7: Static binding of CC2420 registers. Strobe and read/write
registers share an address space. In TinyOS, the address is a runtime pa-
rameter, requiring runtime checks. T2 uses static binding so no checks
are necessary, yet the implementations do not replicate code.

arbitrate for the SPI bus. On the micaZ platform, the SPI
bus is dedicated and arbitration always succeeds (nesC’s
inlining and full program analysis removes most of the
overhead). On the Telos platform, the SPI is shared with
other devices. Of course, if another Telos system holds
onto the bus for long enough, the CC2420 packet buffer
will fill up and drop packets.

T2’s task semantics mean that the race condition prob-
lems which plague TinyOS do not exist. The stack waits
until it signals the sendDone() or receive() event before
returning to an idle state. The worst that can happen with
lots of tasks (heavy load) is long queue waits, which will
decrease packet throughput: they do not, however, intro-
duce race conditions or crash the system.

Internally, the CC2420 stack uses static binding heav-
ily. For example, controlling the CC2420 requires ac-
cessing hardware registers through commands over the
SPI bus. In the TinyOS stack, accessing registers is
a very general interface and requires several runtime
checks. In T2, the register interfaces are much more con-
strained and written in a way to not require these checks.
Figure 7 illustrates how. This structure has the additional
benefit that a programmer can see what registers a com-
ponent accesses by looking at what interfaces it uses,
rather than having to read through the implementation.

Finally, the CC2420 stack uses telescoping abstrac-
tions to allow components to access CC2420-specific
functionality, as shown in Figure 6(a). Components
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AM Packet
Packet
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Encoded/decoded bytes

SerialP

SerialPacketInfoP

UART

Platform Independent
Protocol Specific
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F P S D Data CRC FSerial Packet

Figure 8: The T2 serial stack. F is a framing byte, P is a protocol
type for the serial stack, S is a sequence number for data packets, and
D is the packet format byte. The arrows show which component is
responsible for each header byte.

can wire to the platform-independent component Ac-
tiveMessageC, control CSMA parameters by wiring to
CC2420ActiveMessageC, or directly access the 802.15.4
packet layer by wiring to CC2420RadioC.

6.2 Serial Communication

Bridges and base stations have very different require-
ments. Base stations wish to communicate in terms of
radio independent OS-level packets, while bridges are a
transparent translation between media, therefore wish to
communicate in terms of radio specific packets.

TinyOS addresses this problem by requiring all pack-
ets over the serial link to be radio packets. On one hand,
this approach means that the serial and radio stacks can
share packets, freely passing buffers between queues. On
the other, it means that each platform talks a different
format over the serial port and so requires different PC
software. Platform family compatibility complicates this
further. For example, although the micaZ and Telos share
a radio format, the micaZ uses the mica2 serial format to
maintain backward compatibility with tools. This dis-
crepancy has caused a lot of confusion among users.

T2’s serial stack solves these compatibility issues by
providing both forms of communication. The serial stack
supports multiple packet formats. Since T2 message
buffers are right justified to the internal data payload, the
serial stack needs to know the size of a format’s header
to properly read in a packet. The stack uses static bind-
ing to make an inexpensive call to determine the proper



offset. A program that supports a packet format wires
an implementation of this call (a SerialInfo component)
to the stack. Base stations support platform-independent
packets, while bridges support radio-specific ones. Fig-
ure 8 the structure of the stack and how it relates to the
actual serial packet format. The serial stack’s telescop-
ing abstraction lets application wire in new packet types
(e.g., for low-level operations such as ping) if needed.

The T2 serial stack structure supports greater plat-
form diversity. In TinyOS, adding a new platform re-
quires modifying the PC-side toolchain to recognize a
new packet format or having a platform pretend to be an
existing one. This has been the source of many develop-
ment headaches (e.g., the fact that the micaZ looks like
a mica2). As deployments commonly use base stations
(rather than bridges, which are for development), tools
can now easily incorporate new platforms. Supporting
a new UART requires implementing a simple byte inter-
face (94 lines of code on the Atmega128), while support-
ing a new packet type requires implementing a SerialInfo
component (9 lines of code for the CC2420).

6.3 Communication in OSKI

OSKI builds three services over T2’s communication
stack: AM for node-to-node messages, Broadcast for
broadcast messages, and Uart for serial communication.
All of these services have a ServiceC client component
for starting and stopping as well as SenderC and Re-
ceiverC components for actual communication. Every
sender and receiver component takes a numeric identi-
fier as a parameter to distinguish different instances of
the service. Senders embed the parameter in a packet
header, and the OSKI internals uses it to dispatch to the
correct receiver.

7 Evaluation
In this section, we evaluate how well T2 achieves its
goals. We quantify the costs of these improvements by
comparing T2’s static resource utilization (code size and
RAM), dynamic resource utilization (CPU cycles, which
quantify the OS energy cost), and performance (network
bandwidth) with that of TinyOS.

7.1 Simplifying Platform Development

Two main factors simplify platform development in T2.
First, the telescoping abstraction principle means that
platforms are broken up into subsystems corresponding
to individual chips. We evaluate how this decomposition
simplifies the development of a new platform, using their
radios and microcontrollers as examples. Second, each
subsystem is broken up into many individual layers. We
show, using the example of timers, how this vertical de-
composition allows using a reusable component library,
easing timer implementation for a new microcontroller.

(a) Chip PSLOC

Chip Total PSLOC
msp430 4400
atm128 3142
cc1000 1705
cc2420 1733

(b) Platform Interconnect PSLOC

mica2 micaZ Telos
Processor 3142 3142 4400
Radio 1705 1733 1733
Platform 228 248 192
Percentage 13% 14% 11%

Table 3: PSLOC of the mica2, micaZ, and Telos platforms and their
underlying chips. Radio interconnect code is 11-14% of the radio chip
implementation and 3-5% of the overall source base.

7.1.1 Chips and Interconnects

To illustrate the impact of chips on the platform building
process, we examined the code that defines the binding
between chip abstractions. We use physical source lines
of code (PSLOC) [21] as an approximate indication for
the amount of effort the platform developer has to invest
in order to build a platform out of available chip abstrac-
tions. The hope is that the code to incorporate chips into
a new platform (once per platform) is small compared to
the code written for each chip (once for many platforms).

Table 2(a) shows the total PSLOC count for radio and
microcontroller chips that T2 currently supports. The ra-
dio chip usually has the most interconnect demands. For
example, the CC2420 requires (Section 6.1) interrupts, a
capture register, SPI, and a 32kHz Alarm (Figures 6(b)),
and the CC1000 has similar requirements. Thus radio
integration overhead is a good worst case for other, sim-
pler chips such as nonvolatile storage. Table 2(b) shows
the comparative sizes of the MICROCONTROLLER, ra-
dio, and interconnect code for the mica2, micaZ and Te-
los platforms. The platform-specific interconnect code is
at most 5% (micaZ) of the chip abstractions (and 14%,
demonstrating significant code reuse.

7.1.2 Reusable Hardware Libraries

Chip-specific implementations often have commonali-
ties, such as the Alarm to Timer transformation in timer
stacks. These commonalities allow reusable hardware li-
brary components, simplifying platform development.

Table 4 shows this reuse in T2’s timer subsystem on
the mica2 and Telos platforms. We break the code down
into configuration code, algorithmic code and register
wrapper code. Although more than half of the total code
written is platform-dependent, much of it simply con-
nects components together (configuration code) or pro-
vides convenient shortcuts for accessing hardware regis-
ters (register wrappers).

The difficult code to write and debug – timer virtual-
ization over a single hardware timer resource, transition-
ing timer-related interrupts to the synchronous task con-
text, and transforming arbitrary hardware timer widths to
a common format – resides in the reusable hardware li-
brary. Bringing up a timer stack on a new microcontroller
requires writing HPL access functions for each timer reg-
ister and code for the low-level Counter and Alarm inter-



mica2 Telos
HW independent configurations and interfaces 62 62

algorithmic code 359 359
Total 421 421

HW dependent configurations and interfaces 128 362
algorithmic code 102 138
register wrapper code 71 353
Total 301 853

Reuse percentage 58% 33%

Table 4: Breakdown of the timer subsystem in PSLOC.

faces. T This last task requires fewer than 150 lines on
both the mica2 and Telos platforms.

7.2 Simplifying Application Development

T2 simplifies application development in two ways.
First, high-level applications can be built on top of a
service distribution. As the service distribution han-
dles all of the complexity below its abstraction bound-
ary, the application does not have to simultaneously man-
age abstractions at the low-level (e.g., SPI bus power
state) and high level (e.g., query processing). Admit-
tedly, no large applications yet run on T2; as service dis-
tributions grew from our experiences building such sys-
tems [19, 32, 7, 28, 9], however, we believe they will be
successful. For example, consider managing the power
state of the radio. An application may have several con-
current network services running (e.g., routing and code
propagation). Components are independent units, but
these components must collaborate to manage the power
state. OSKI’s Service interface provides a simple solu-
tion to this problem.

Second, telescoping abstractions and static binding
simplify building highly optimized applications. Tele-
scoping abstractions give components options besides di-
rectly accessing hardware, which bypasses the compo-
nent graph and precludes compile-time checks. Static
binding enables these compile-time checks: nesC has
mechanisms, for example, to check that two components
do not accidentally both wire to a dedicated resource.

7.3 Reliability

To validate that T2 improves system reliability, we con-
structed two stress cases. The first is a simple sense and
send application that samples a sensor at 1kHz and con-
tinuously reports the results over the radio. We tested
this application on the micaZ platform. With a two entry
task queue, the TinyOS version crashes (stops sending
messages) after a few seconds to a few minutes. Admit-
tedly, this result is for artificially high message rates and
a very short task queue. However, reducing the message
rate only lowers the probability of problems, rather than
eliminating them. This is not acceptable for applications
which are expected to run for months to years. Similarly,
while it is possible to increase the task queue size to fix
this particular application, there is no way to determine a

safe queue size for an arbitrary one, especially given that
tasks may be posted multiple times.

The second stress case involves the CC2420. To quan-
tify how often the TinyOS CC2420 stack might intro-
duce race conditions into a problematic application, we
instrumented the stack to count how many times it issued
a synchronous event in an async context. We then ran
the same communication application as in the bandwidth
experiments in Section 7.4.3, except that the application
included a task that degeneratively reposted itself enough
to fill the task queue.

This degenerate task had three effects. First, it caused
the timer system to fail. Second, the stack communi-
cation rate dropped by approximately 50%. Third, af-
ter running for one minute, the stack had violated the
TinyOS concurrency model 48 times. The best analogy
to this behavior would be for a thread library to once a
second randomly ignore a request to acquire a mutex.
While in lightly loaded systems this might go unnoticed,
under load, large scale, or long lifetimes it would fail.

None of these reliability failures occur in T2. The
sensing application ran overnight with no problems. A
degenerate task does not disrupt timers and does not re-
duce throughput. The CC2420 stack does not ever vio-
late the task/async boundary.

7.4 Resource Usage and Performance

The four design principles used in T2 can lead to in-
creases in code size, RAM and CPU usage. Service
distributions and telescoping abstractions break subsys-
tems into more layers, potentially increasing code size
and CPU usage. Static allocation may increase RAM us-
age by reducing the amount of runtime sharing between
components. Finally, virtualizing or sharing a resource
at run-time requires extra RAM and CPU cycles.

However, several factors mitigate these resource im-
pacts. First, the nesC compiler performs extensive in-
lining (The compiler only inlines small and called-once
functions, thus decreasing rather than increasing code
size). Combined with dead-code elimination, this re-
duces the impact of breaking applications into many
small components [7]. Finally, the elimination of run-
time failures due to static allocation, virtualization and
resource sharing often simplifies components, allowing
the removal of, e.g., state variables.

We compare TinyOS’s and T2’s resource usage and
performance in three ways. First, we look at the core
OS cost – the scheduler overhead. Next, we compare the
code size, RAM usage and CPU cycles of four simple
applications. Finally, we evaluate the OS’s performance
by comparing their sustainable maximum bandwidth.



Application TinyOS T2
code / ram code / ram

Null mica2 434 / 19 494 / 3
micaZ 464 / 19 440 / 2
Telos 1056 / 20 1510 / 6

Blink mica2 1890 / 69 2270 / 53
micaZ 1920 / 69 2216 / 52
Telos 2838 / 62 2938 / 61

RadioSenseToLeds mica2 9538 / 400 10922 / 231
micaZ 8134 / 300 10808 / 246
Telos 13988 / 285 12238 / 238

SerialBridge mica2 11380 / 1986 14520 / 1444
micaZ 9804 / 1900 14330 / 1447
Telos 12102 / 1844 12202 / 1431

Table 5: Code and RAM sizes for simple applications.

7.4.1 Scheduler Overhead

The scheduler imposes two kinds of overhead. The first
is the cost of posting and executing a task, the second
is the cost of checking that the task queue is empty and
going back to sleep (this has to be done after every inter-
rupt). We wrote two simple applications to measure these
costs on the micaZ platform, using a hardware timer to
count processor cycles. We measured the cost of posting
and executing a task using a simple task that always re-
posts itself. We measured the cost of checking the task
queue is empty by instrumenting the scheduler.

Posting and executing a TinyOS task takes 80 cycles,
while checking that the task queue is empty takes 26 cy-
cles. The T2 scheduler takes 103 cycles to post and exe-
cute a task, and 20 cycles to test for an empty task queue.
The relative overhead of the TinyOS vs T2 scheduler will
thus depend on the ratio between the number of inter-
rupts taken and the number of tasks posted by an applica-
tion. These small differences will not have a significant
affect on overall CPU usage.

As noted in Section 4.3, the T2 scheduler allocates one
byte per task rather than have a fixed size (8) task queue
with two byte entries. For simple applications, such as
SerialBridge with its five tasks, this saves 11 bytes. For
the largest TinyOS application, TinyDB, which has 28
tasks, the T2 scheduler costs 12 bytes. However, even
this cost is often mitigated by simpler state management,
as a component does not need to keep track of whether a
task has already been posted.

7.4.2 Application Resource Usage

We consider the RAM size, code size, and CPU utiliza-
tion of four simple applications: Null, the simplest, do-
nothing program; Blink, which blinks a motes LEDs; Ra-
dioSenseToLeds, which reports sensor values over the ra-
dio; and SerialBridge, which is the standard serial-radio
bridge. We compare resource usage on the mica2, micaZ
and Telos platforms.

Table 5 shows the results. For each application and
operating system, the first number is the code size and
the second RAM usage, both in bytes. The extensive
cross-component inlining performed by nesC makes it

Application TinyOS T2
(kcycles/s) (kcycles/s)

Blink mica2 8.0 5.4
micaZ 8.0 5.4

RadioSenseToLeds mica2 240 186
micaZ 9.1 7.5

SerialBridge mica2 206 186
micaZ 8.0 12.3

Table 6: CPU usage for simple applications.

hard to explicitly attribute code to a particular compo-
nent. Nevertheless, by examining code sizes with in-
lining disabled, we observed that the main increases of
code size in T2 are due to a more complex timer system,
a more flexible serial port protocol and a better quality
random number generator. The more complex time sys-
tem costs about 300 bytes on the mica family, as seen in
Blink. The better random number generator is used by
the mica2 radio, and adds about 1kB to the RadioSense-
ToLeds and SerialBridge applications. Finally, the in-
crease in the serial port protocol size is visible on all
platforms in the SerialBridge application.

The RAM usage is comparable or lower in T2. A
cleanup of the mica2 radio stack saved 150 bytes in T2
(see RadioSenseToLeds). The difference in RAM for Se-
rialBridge is due to a very large task queue in the TinyOS
version, which was recently added “to lower the chance
of a [task] post failure”.

We also compare the CPU usage of the Blink, Ra-
dioSenseToLeds and SerialBridge applications, on the
mica2 and micaZ platforms – the Telos T2 support is
still in development and not completely stable. The
RadioSenseToLeds application was ran alone, so sent a
message a second and did not receive anything. The Seri-
alBridge application was run with another mote sending
a message a second, leading to one radio message re-
ception and one serial message transmission per second.
We ran these applications for 30 seconds, instrumented
to count the number of CPU cycles spent in the sched-
uler, tasks and interrupt handlers. Table 6 reports these
results, averaged over three runs, in cycles / second.

These results show that on Blink and RadioSense-
ToLeds T2 is more efficient than TinyOS. The higher
CPU usage in SerialBridge is due to higher overhead in
the serial port protocol – we verified this by testing a
version of SerialBridge with serial port transmission dis-
abled, giving a CPU usage of 5.1kcycles/s on the micaZ
in T2. As the serial protocol is generally used on motes
connected to PCs, its CPU efficiency is not critical.

While these results are only for very simple applica-
tions, they do show that T2 has comparable resource us-
age to TinyOS applications. In particular, we see that
using a statically allocated task queue can save, rather
than cost, RAM (see SerialBridge).



One-Way Two-Way
Packet Size 40B 14B 40B 14B
TinyOS 200 246 254 362
T2 380 616 386 648
Improvement 90% 150% 51% 79%

Table 7: Packet per second throughput for the CC2420 stack on micaZ.

7.4.3 Network Performance

We compare the network performance of T2 and TinyOS
on the micaZ platform. The major difference between
the two radio stacks is that TinyOS uses larger and more
monolithic hardware abstractions, and assumes it can
freely use shared resources, such as the SPI bus. Ad-
ditionally, TinyOS uses more run-time parameters. We
compared the two with simple applications that send
packets as fast as they can (calls send() in the sendDone()
event). We ran two separate experiments. In the first,
we measured single node bandwidth by having one node
transmit and one node listen. In the second, we had two
nodes try to send packets as quickly as possible. We
ran each experiment twice, once with large packets (40
bytes, including all headers and footers) and once with
small packets (14 bytes). We measured average packet
per second communication over a 60 second window (the
nodes communicated for 60 seconds then stopped). Each
experiment had five separate runs; the results for the runs
were all within 3% of each other.

Table 7 shows the results. T2 shows a 51-150% perfor-
mance improvement over TinyOS. The TinyOS stack is
unable to process packets at same rate as T2. This is due
to two factors that we were able to identify. First, both
stacks flush the receive memory whenever they think
there is a problem, but the TinyOS stack has a much
broader definition of what constitutes a problem. Sec-
ond, the TinyOS stack reads packets in task context, in-
curring task latency between a receive interrupt and ac-
tual reception, while the T2 stack starts the split-phase
SPI read in the async interrupt handler.

8 Related Work
TinyOS [15] is the dominant sensor network operat-
ing system today. Designed in concert with the nesC
language [8], it relies on language mechanisms to en-
force and support its design methodology. T2 builds on
TinyOS’s successes, but casts off decisions which expe-
rience has shown to be problematic.

Other sensor OSes, such as MOS [1] and SOS [10],
have taken more traditional approaches. Rather than use
a new language, they are C based. MOS provides a mi-
crothreaded UNIX-like environment with blocking oper-
ations: a thread configures a sensor with adev ioctl
call and samples it withdev read . It therefore follows
the UNIX “everything is a file” abstraction, via a few
calls with a large number of parameters. This pushes er-
ror checking to runtime, as the interfaces do not express

the constraints underlying resources. For example, a pro-
gram can try to read from an A/D converter pin that does
not exist. TinyOS’s (and T2’s) wiring model catches such
errors at compile-time.

The SOS operating system is also written in C, but is
otherwise similar to TinyOS, as it is component based
and has a run-to-completion concurrency model. How-
ever, it is less restrictive than TinyOS. Rather than a sin-
gle FIFO task queue, SOS has priority queues. SOS also
provides mechanisms for dynamically linking new bi-
nary components. However, RAM constraints prevent
linking correctness checks from being foolproof. Fur-
thermore, while checking individual components may be
tractable, the most difficult errors and bugs are often the
result of combinations of components and their interac-
tions. Leaving these complexities to a dynamic environ-
ment makes diagnosing problems even more difficult.

Design differences aside, MOS and SOS both still suf-
fer from the same problem as TinyOS does with its task
queue. In MOS, a program has a fixed maximum number
of threads. While they are usually allocated at boot time
(making errors easy to find), they can also be allocated
at runtime, opening the possibility of failure. SOS uses
a memory pool to dynamically allocate inter-component
messages. While the runtime propagates allocation fail-
ure as an error to the message passing call, few com-
ponents check for this, and as the complexities of the
CC2420 stack show, sometimes there is no good way to
deal with such a failure.

There are many component languages besides nesC,
designed for regular programming tasks [35, 5, 23, 4],
for hardware design [16], for distributed systems [13] or
for modeling [30]. Most of the implementation-oriented
work has focused on large systems, with two major ex-
ceptions. The Flux OSKit [5] is a component system
designed for building desktop-style operating systems,
which have very different resource and reliability issues
than sensor networks, while the Koala system [35] is de-
signed for consumer electronic (CE) devices (such as
TVs). On one hand, Koala’s intended domain has sim-
ilarities to sensor networks: CE devices require rapid de-
velopment, but software must be very reliable as there
is no way to upgrade it once deployed. On the other
hand, the design space is also very different: CE devices
are a narrow set of product lines that evolve over time.
Therefore, Koala takes an object-oriented approach, so
software for a new model can extend prior functionality.
Koala is intended for the user interface to product fam-
ilies within a few application domains, while T2 is in-
tended to be an operating system for as broad a spectrum
of application domains as possible.

The Snack [9] system builds applications by auto-
matically combining system modules while resolving
application constraints and cross-service interdependen-



cies. Service distributions build on Snack’s observation
that unforeseen interactions are a major source of com-
plications when developing applications with software
components Just as TinyOS is about discovering system
boundaries, service distributions draw the line between
applications and the operating system – providing func-
tionality without the complexity.

9 Discussion
T2 borrows many of TinyOS’s design decisions because
they have, for the most part, been successful. The CPU
is mostly idle in a wide range of sensor network applica-
tions [26]. Instead of heavy processing, the CPU’s major
responsibility is to move data from one peripheral to an-
other (e.g., from sensor to storage, from storage to radio),
perhaps processing it a bit along the way. Therefore, a
data flow centric approach, with events and lightweight
handlers, is better suited to sensor applications than a
threaded approach.

TinyOS’s flexibility and few restrictions makes it an
excellent research tool. A new routing protocol is a small
handful of components that sit on top of the data link
layer, a new MAC protocol is a replacement for one or
more of the components within the data link layer. Hav-
ing complete control of the entire system makes it easy
to addressing narrow and specific research questions,
whose experimental methodologies often require settings
that a real deployed system would rarely encounter.

When it comes to larger and more complex systems,
however, this power is a liability. TinyDB, for exam-
ple, was the first large system built for TinyOS. After
three years, small teams of researchers were still unable
to achieve reasonable data delivery rates [31, 32], citing
subsystem interactions as the cause.

While the T2 scheduler improves system reliability, it
still has limitations. Like TinyOS and SOS, a run-to-
completion model means that an infinite loop can, like an
overflowing task queue, cause the system to fail. How-
ever, compared to the task queue, which involves inter-
actions between many components, checking the code
in a task is a much easier local problem. In practice,
while programmers occasionally encounter this problem,
it is generally very early in the development cycle (e.g.,
the first installation). Similarly, while the nesC compo-
nent model provides structure to limit memory access er-
rors, components that pass variable size memory regions
around can still have faults. For example, while develop-
ing the T2 CC2420 stack, we encountered an off-by-one
error that caused a length byte to be overwritten, leading
the SPI bus to read into the entire program rather than
just a buffer. However, in the entire development cycle
of tens of thousands of lines of code, this was the only
such bug we encountered.

The problems that operating systems such as T2,

TinyOS, and SOS face stem from a basic tension in com-
ponent systems between local independence and global
properties. On the one hand, components are intended to
be completely independent, black-box functionality that
can be quickly incorporated into a program. On the other
hand, they inevitably share resources, and therefore com-
position decisions affect global system behavior.

The application specificity of sensor networks means
that no single global policy is suitable for addressing
such global issues. For example, one complaint often
made about TinyOS is its lack of scheduling priority lev-
els. At first glance, this idea makes sense, as depending
on the task, latency can have a wide range of effects, in-
cluding dropping packets, reduced bandwidth, and timer
jitter. But priority schemes raise the follow-up question:
who specifies the priorities? Depending on the applica-
tion, each of the previously mentioned effects could be
negligible or serious. A communication stack that as-
sumes it has the highest priority can cause an applica-
tion that cares about timer precision to fail. Our best
solution to this conundrum – leaving task priority assign-
ment to the application – is problematic: the application
writer has to correctly figure out the relative importance
of thirty or more tasks. Thus we believe that avoiding
priorities is a good example of limiting flexibility to im-
prove the reliability and usability of the system.

As many of the figures have shown, one result of this
tension is that T2 does not always have monolithic lay-
ers. Rather than just placing components above or below
a layer, many compositions involve placing components
in between layers (e.g., CC2420PlatformAlarmC in Fig-
ure 2), or both above and below (e.g., SerialActiveMes-
sageP and SerialPacketInfoP in Figure 8).

Ultimately, T2’s four design principles are about com-
ponent composition and boundaries. They help man-
age the tension between local independence and global
properties. Telescoping abstractions allow developers
to consciously choose a point between portability and
functionality. Partial virtualization allows compositions
to share resources implicitly through virtualization and
explicitly through the Resource interface, and to deny
sharing when necessary. Static allocation and binding
reduces unforeseen interactions and makes the relation-
ships between components as explicit as possible. Fi-
nally, service distributions establish a boundary between
application-level code and OS services. A service distri-
bution can reorganize and change underlying implemen-
tations without requiring application modifications.

10 Conclusion
T2 takes five years of development with sensor networks
and tries to create a fresh start, defining a component ar-
chitecture that will be effective and useful in the long
term. It is still very much a work in progress, and in-



cludes several subsystems we do not discuss here, such
as power management, sensors, and non-volatile storage.
Platform evolution, emerging applications and increas-
ing experience in the user community will drive future
T2 evolution.

Specifying interfaces is the most challenging aspects
of nesC development, as changing them requires chang-
ing every component that uses them. The lack of bound-
aries in TinyOS complicates this problem, as applica-
tions often access interfaces that were initially intended
to be internal. In this paper, we showed how applying
four design principles to component architecture in T2
increases its reliability, decreases its overhead, simpli-
fies application construction, and makes porting to new
platforms easier. While TinyOS and nesC are about cre-
ating reusable components, T2 is about composing com-
ponents and building reliable applications.
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