
Design
  GOAL: Explicitly support parallel applications while

 improving kernel scalability

  Many-core Process (MCP)
  No longer a single thread in a virtual processor
  Multiple cores ʻownedʼ by a single process
  All cores gang scheduled
  Information exposed up, requests sent down

  Asymmetric Use of Cores
  Low-Latency vs. Coarse-Grained Cores
  Asynchronous Remote Calls (ARCs)
  Kernel control path on a limited number of cores

  Resource Provisioning
  Provisions setup before allocation takes place
  Increases isolation between processes
  Enables predictable application performance
  Allows the system to utilize unused resources

Resource Provisioning

Many-Core Process

Current Implementation

Asymmetric Use of Cores

  Resources provisioned to MCPs based on future needs
  Resources allocated to MCPs based on immediate needs
  Processes scheduled based on meeting resource guarantees (QoS)
  Resource guarantees enforced either in hardware or in software

  Coarse-Grained Cores
  Used for parallel computations

 requiring predictable performance
  Time-sliced at coarse-granularity
  Granted to apps running as MCPs

  Low-Latency Cores
  Handle time-critical events out of band
  Always runnable, not gang-scheduled
  Time-sliced at fine-granularity
  Examples: UI events, TCP ACKs, etc.

  Asynchronous Remote Calls (ARCs)
  System calls serviced asynchronously

 on Low Latency Cores
  Increase per core cache locality
  Decrease cross core lock contention
  Limit kernel interference with apps

  Small set of cores control the system
  Manages what processes run where
  No need for per core run queues

  More scalable than traditional process models
  No mapping of user-level threads to kernel threads

 (the kernel is completely event-based)
  No per-core run queues

  Provides richer set of resource guarantees to processes
  Expose more information about system resource utilization
  MCPs make explicit requests for those resources

  All cores granted to an MCP are gang scheduled
  No unexpected interrupts or blocking system calls (ARCs)

Traditional 1:1 Process Many-core Process

Core 1 Core n

Scheduler

Core 1 Core nCore 0

Scheduler
Sched Sched Sched

Core 0

POSIX System Calls
Vserver
Solaris Zones

Para-virtualized VMs (Xen)
Fully Virtualized VMs with
performance enhancements

Fully Virtualized VMs
(Qemu, KVM, VMWare)

Exokernel

Java VM
Apache VHost

ROS

Am
ou

nt
 o

f I
nf

or
m

at
io

n
Ex

po
se

d
to

 A
pp

lic
at

io
n

Similarities to a real machine

User Mode Linux

Preliminary Results

