
Design

  GOAL: Explicitly support parallel applications while

 improving kernel scalability

  Many-core Process (MCP)

  No longer a single thread in a virtual processor

  Multiple cores ʻownedʼ by a single process

  All cores gang scheduled

  Information exposed up, requests sent down

  Asymmetric Use of Cores

  Low-Latency vs. Coarse-Grained Cores

  Asynchronous Remote Calls (ARCs)

  Kernel control path on a limited number of cores

  Resource Provisioning

  Provisions setup before allocation takes place

  Increases isolation between processes

  Enables predictable application performance

  Allows the system to utilize unused resources

Resource Provisioning

Many-Core Process

Current Implementation

Asymmetric Use of Cores

  Resources provisioned to MCPs based on future needs

  Resources allocated to MCPs based on immediate needs

  Processes scheduled based on meeting resource guarantees (QoS)

  Resource guarantees enforced either in hardware or in software

  Coarse-Grained Cores

  Used for parallel computations

 requiring predictable performance

  Time-sliced at coarse-granularity

  Granted to apps running as MCPs

  Low-Latency Cores

  Handle time-critical events out of band

  Always runnable, not gang-scheduled

  Time-sliced at fine-granularity

  Examples: UI events, TCP ACKs, etc.

  Asynchronous Remote Calls (ARCs)

  System calls serviced asynchronously

 on Low Latency Cores

  Increase per core cache locality

  Decrease cross core lock contention

  Limit kernel interference with apps

  Small set of cores control the system

  Manages what processes run where

  No need for per core run queues

  More scalable than traditional process models

  No mapping of user-level threads to kernel threads

 (the kernel is completely event-based)

  No per-core run queues

  Provides richer set of resource guarantees to processes

  Expose more information about system resource utilization

  MCPs make explicit requests for those resources

  All cores granted to an MCP are gang scheduled

  No unexpected interrupts or blocking system calls (ARCs)

Traditional 1:1 Process
 Many-core Process

Core 1
 Core n

Scheduler

Core 1
 Core n
Core 0

Scheduler

Sched
 Sched
 Sched

Core 0

POSIX System Calls

Vserver

Solaris Zones

Para-virtualized VMs (Xen)

Fully Virtualized VMs with

performance enhancements

Fully Virtualized VMs

(Qemu, KVM, VMWare)

Exokernel

Java VM

Apache VHost

ROS

Am
ou

nt
 o

f I
nf

or
m

at
io

n

Ex

po
se

d
to

 A
pp

lic
at

io
n

Similarities to a real machine

User Mode Linux

Preliminary Results

