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Wireless sensor networks (WSNs) represent a new generation of networked embedded systems that

must achieve long lifetimes on scarce amounts of energy. Since radio communication accounts for
the primary source of power drain in these networks, a large number of different radio power man-

agement protocols have been proposed. However, the lack of operating system support for flexibly

integrating them with a diverse set of applications and network platforms has made them difficult
to use. This paper focuses on providing link layer support towards realizing a Unified Power

Management Architecture (UPMA) for WSNs. In contrast to existing monolithic approaches, we
provide (1) a set of standard interfaces that separate link layer power management protocols from

common MAC level functionality, (2) an architectural framework that allows applications to eas-

ily swap out different power management protocols depending on its needs, and (3) a mechanism
for coordinating multiple applications with different power management requirements. We have

implemented our approach on both the Mica2 and Telosb radio drivers in TinyOS-2.0, the second

generation of the de facto standard operating system for WSNs. Microbenchmark results show
that our approach can coordinate the power management requirements of multiple applications
in a platform independent fashion while incurring negligible overhead.

Categories and Subject Descriptors: C.2.2 [Computer Communication Networks]: Net-

work Protocols—Protocol Architecture; D.2.2 [Software Engineering]: Design Tools and Tech-

niques—Modules and Interfaces

General Terms: Experimentation, Design

Additional Key Words and Phrases: Wireless Sensor Networks, Radio Power Management, Ar-
chitecture, Framework

1. INTRODUCTION

Wireless sensor networks are a unique type of networked embedded system in which
ultra low power operation is crucial. Wireless sensor networks typically consist of a
large number of sensor nodes. In many applications, these nodes must be able run
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unattended for months or years without any human interaction, making it essential
to save energy wherever possible.

Wireless sensor network applications can range from low data rate habitat mon-
itoring applications [Szewczyk et al. 2004][Tolle et al. 2005] to higher data rate
intruder detection and tracking applications [He et al. 2006]. While energy is al-
ways a major concern, different application requirements can influence the way in
which energy is to be preserved. Habitat monitoring applications, for example, have
steady, periodic traffic allowing them to duty cycle their radios in order to reduce
energy consumption. Latencies in message delivery are tolerable, and sometimes
even encouraged if it means that better energy savings can be achieved. Appli-
cations such as intruder detection and tracking, on the other hand, rely on fast
message delivery due to the urgency of the information they are providing. These
applications are dominated by long periods of inactivity, followed by large bursts of
traffic once something has been detected. They would rather sacrifice some energy
savings for an increased level of performance once they start generating messages.

As evidenced above, it is not always possible to use the same energy manage-
ment protocol for every type of application. A protocol optimized for low data rate,
periodic habitat monitoring applications may perform poorly in an intruder detec-
tion application [Ye et al. 2006], whereas a protocol designed for bursty workloads
would be unnecessarily complex for a simple habitat monitoring application. There
must therefore be a way to allow an application to incorporate the use of whichever
power management protocol is most appropriate for it.

At times, it may also be desirable to allow multiple applications to run concur-
rently on a single node. Imagine a set of real-time monitoring applications that
each take readings from different sensors at different sampling rates. If each of
these applications were to be installed on a single node, we would need a way of re-
solving the different requirements they impose on an underlying power management
protocol. Sometimes it may be sufficient to configure a single protocol accordingly.
Other times it may be more convenient to choose multiple protocols from a set of
predefined ones and find a way to compose them together in some coherent way.

Unfortunately, despite significant progress in the development of power manage-
ment protocols for wireless sensor networks, existing systems still lack radio driver
support for flexibly choosing which ones are most appropriate and allowing them
to be plugged directly into an existing system. Traditionally, MAC protocols and
power management protocols have been developed together to produce a single
monolithic implementation. Development of a new power management protocol
meant redesigning an entire radio stack from the ground up.

To address these issues, we propose a radio driver architecture that not only
allows different power management protocols to be flexibly integrated into a fully
functional wireless sensor network system, but also allows the requirements imposed
by multiple applications1 to be coordinated in such a way that a single coherent
power management solution is produced. With radio communication as the single
largest source of energy consumption in wireless sensor networks, radio power man-

1The word application is overloaded. An application is anything actually sitting on top of the
MAC layer, including the traditional notion of an application, as well as duty cycling protocols

such as PEAS (as discussed in Section 5.2).
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agement protocols are at the core of any such solution. While these radio power
management protocols may exist across different layers in the networking proto-
col stack, this work focuses on duty cycling protocols existing only at the data
link layer. A high-level overview of an overall Unified radio Power Management
Architecture (UPMA) is presented in [Klues et al. 2007].

Specifically, this paper makes the following primary contributions: (1) We de-
sign and implement a set of interfaces that allow different radio power management
protocols to share common MAC functionality at the data link layer. The sep-
aration we propose gives different applications the ability to incorporate the use
of whichever power management protocol is best suited to its needs, independent
of the underlying MAC protocol it relies on. 2 (2) We propose an architectural
framework that gives multiple applications the ability to specify their (sometimes
differing) requirements to a single underlying radio power management protocol.
Coordination of these requirements is achieved through a customizable component
whose implementation depends on both the power management protocol in use and
the types of applications running on top of it. (3) We demonstrate the practical-
ity of this architecture by implementing it within the TinyOS operating system
on top of two platforms in wide use in wireless sensor networks today. We show
that separating power management protocols from the MAC level functionality on
which they rely increases flexibility while introducing only a negligible performance
penalty. (4) Finally, we provide two case studies demonstrating how differing re-
quirements from multiple applications can be resolved within our architecture. In
each case study we show how to coordinate these requirements differently.

The rest of this paper is organized as follows. Section 2 first provides an overview
of typical power management protocols for which our architecture is being devel-
oped. Section 3 then presents the design of our architecture with Section 4 providing
example implementations demonstrating its various features. Section 5 presents ex-
perimental results of the overhead incurred by implementing power management
protocols using our architecture, as well as results obtained during our two case
studies. Finally, Section 6 concludes the paper.

2. POWER MANAGEMENT APPROACHES

In this section, we review existing approaches to radio power management in WSNs.
This review provides the basis for our design of a common set of interfaces and a
unified architecture that can support diverse power management protocols.

Existing approaches to radio power management fall into two categories: trans-
mission power control and duty cycling. Transmission power control [Santi 2005]
reduces the energy consumed during communication by adjusting the power at
which a radio transmits. Duty cycling reduces energy wasted during idle listening
by allowing the radio to cycle between periods of activity and sleep. The archi-
tecture presented in this paper only focuses on supporting duty cycling protocols,
which have proven to be a very efficient means of extending the system lifetime

2Certain power management optimizations (such as overhearing avoidance) may still need to be

implemented within the MAC layer itself, but features such as this are beneficial to all power
management protocols existing at the link layer, and their existence does not diminish the need

for providing the separation that we do.
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of WSNs. It can be accomplished by following one of three different approaches:
TDMA, scheduled contention, or channel polling [Ye et al. 2006].

In TDMA based protocols, time is divided up into discrete time slots and allo-
cated to all nodes within transmission range of one another. Nodes transmit during
the time slots that have been allocated to them, and listen during the time slots
that have been allocated to those nodes from which they wish to receive. When not
transmitting or receiving, a node is free to sleep. Several different TDMA based
protocols have been proposed for use in WSNs. These protocols include TRAMA
[Rajendran et al. 2003], and DRAND [Rhee et al. 2006]. One limitation of these
types of protocols is that their schedules can be very sensitive to changes in network
traffic or network topology, and all nodes sharing a schedule must remain synchro-
nized with one another. Whenever one of these properties changes, a new TDMA
schedule must somehow be generated and distributed to some subset of nodes in
the network.

Protocols based on scheduled contention allow nodes to schedule times in which
they will all be awake in order to communicate. Nodes within transmission range
of one another synchronize their schedules to ensure that they are all awake at the
same time. While awake, nodes contend for use of the radio channel through a
process known as CSMA/CA. Nodes that gain access to the channel during this
contention period are allowed to send, while all other nodes listen. Several energy-
efficient MAC protocols based on sleep scheduling include S-MAC [Ye et al. 2004],
T-MAC [van Dam and Langendoen 2003], and Z-MAC [Rhee et al. 2005]. Despite
the energy savings achieved using protocols of this type, energy is still wasted in
maintaining synchronization and waking up when there is no data to transmit or
receive.

Protocols based on channel polling (such as the Low Power Listening features of
B-MAC [Polastre et al. 2004], WiseMac [El-Hoiyi et al. 2004] and X-MAC [Buet-
tner et al. 2006]) do not require synchronized contention periods for reception and
transmission. All nodes independently wake up to poll the radio channel for activ-
ity. If there is, they prepare themselves for message reception. If there is not, they
return immediately to sleep. Transmitting nodes send a stream of preamble bytes
(or wake up tones) equal to the polling period of their destination nodes, in order
to ensure that they wake up in time to receive any actual data. In lightly loaded
networks, these types of protocols can achieve better power savings than schedul-
ing based protocols since the overhead associated with long contention periods and
synchronization is avoided. In heavily loaded networks, however, the overhead of
transmitting a long stream of preamble bytes starts to outweigh these benefits.

Hybrid protocols (SCP [Ye et al. 2006], Funneling-MAC [Ahn et al. 2006], and
IEEE 802.15.4 [IEEE 2003]) combine some of the features present in TDMA, sched-
uled contention, and channel polling based protocols in order to find a reasonable
tradeoff between message latency and power consumption. SCP, for example, com-
bines the advantages provided by channel polling with those of scheduled contention
in order to avoid the problems normally associated with requiring time synchroniza-
tion while at the same time avoiding long preamble costs. Funneling-MAC, on the
other hand, allows some nodes near a sink to run TDMA schedules while all others
follow either a scheduled contention or polling based duty cycle. The overhead of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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maintaining the TDMA schedule is mitigated by the fact that only a small number
of nodes actually need to follow it.

To improve the performance of duty cycling protocols, backbone based power
management protocols have also been proposed to support performance sensitive
applications. Protocols such as ASCENT [Cerpa and Estrin. 2002], SPAN [Chen
et al. 2001], GAF [Xu et al. 2001], and PEAS [Ye et al. 2003] set up a backbone of
nodes that must be continually active in order to quickly forward messages between
a source and its sink. Nodes not in the backbone are allowed to follow one of the
four different types of duty cycling protocols presented in this section. Membership
in the backbone is periodically changed in order to balance the power consumed by
all nodes in the network.

In this paper we present a set of interfaces that allow the duty cycling protocols
described above to be implemented in a platform independent manner at the link
layer. In [Klues et al. 2007] we build on this work by creating an optimized, com-
ponent based architecture within which these protocols can easily be implemented.
The component-based architecture presented in [Klues et al. 2007] sits on top of
the interfaces presented in this paper and is therefore complementary to them.

3. DESIGN OF THE ARCHITECTURE

In this section, we describe the architectural support necessary for providing flex-
ible radio power management at the data link layer. This architecture defines a
set of interfaces that allow different duty cycling protocols to be independently im-
plemented on top of a common underlying radio stack. The introduction of these
interfaces enables support for flexibly integrating different duty cycling protocols
into a system based on its specific application requirements. This architecture also
includes support for defining components that are capable of coordinating the duty
cycling requirements from multiple applications. By combining these requirements
inside a separate architectural component, different duty cycling protocols can be
made to work with a diverse set of applications and platforms.

3.1 Overview of TinyOS

Although the architectural design presented in this section is not inherently tied to
any particular OS, we use terminology and naming conventions borrowed from the
TinyOS [Hill et al. 2000] operating system in order to describe it. TinyOS is the
de facto standard operating system in use today for wireless sensor network devel-
opment. Its component-based design offers a good, well-understood vocabulary for
discussing interactions among the components in our architecture. For analogous
reasons, the interfaces we present are all given in nesC [Gay et al. 2003] syntax, the
implementation language of TinyOS.

Unlike traditional operating systems used in other types of distributed systems,
TinyOS has no threads and is completely non-blocking. In a traditional operating
system that support threads and blocking I/O, calls to long-running I/O operations
do not return immediately and block an application from continuing execution until
the operation is complete. In contrast, TinyOS implements all of its long running
I/O operations using asynchronous I/O. It introduces the notion of a split-phase
operation, separating the invocation and completion of an I/O operation into two
separate phases of execution. An application begins an I/O operation by making
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a function call directly into an I/O device driver. After the driver forwards this
request to the I/O hardware it returns control immediately back to the application.
The application is now free to continue executing or go to sleep while it waits for
the I/O operation to complete. Once the I/O operation is complete, an interrupt
is generated, triggering the device driver to issue a callback to the application so it
can continue execution. In TinyOS terminology, the function that the application
calls to begin the I/O operation is known as a command, and the callback is known
as an event. All of the interfaces specified in this section are split-phase and thus
are annotated with these terms.

Split-phase operations allow highly concurrent TinyOS applications to be imple-
mented efficiently with a small memory footprint. They also enable fine-grained
energy management to be implemented directly within the OS. Details on TinyOS
and the advantages and disadvantages of using split-phase operations can be found
in [Gay et al. 2007] and [Klues et al. 2007].

3.2 Supporting Flexibility

We begin our discussion on how our architecture is able to support flexibility by
first defining a clear separation between what functionality is shared among duty
cycling protocols and what is not. We define a set of common interfaces between
the features present in radio specific MAC implementations and the features dis-
tinguishing one duty cycling protocol from another. Figure 1 shows how existing
monolithic implementations are constructed, while Figure 2 shows how we separate
them by introducing a set of uniform interfaces between a duty cycling protocol
and its underlying MAC layer.

MAC

Send/Receive
Buffers

Duty Cycling
Protocol

Clear
Channel

Assessment

Backoff Controller

Radio
State

Machine

Send/Receive Interfaces Duty Cycling Interfaces Backoff Control Interfaces

Radio Component

Fig. 1. Existing monolithic implementations of the MAC layer

In both figures we see 5 functional components that make up the MAC layer of
a radio device driver: the radio state machine, a set of radio send/receive buffers, a
clear channel assessment module, a backoff controller, and a duty cycling protocol.
Each component is in charge of providing certain functionality required by the
device driver, with the radio state machine overseeing all operations performed by
each of the other components. When an application wishes to transmit a packet,
ACM Journal Name, Vol. V, No. N, Month 20YY.
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MAC

Send/Receive
Buffers

Clear
Channel

Assessment

Backoff Controller

Radio
State

Machine

Send/Receive Interfaces Backoff Control Interfaces

Duty Cycling Protocol

ChannelMonitorRadioPowerControlPreambleLength

Duty Cycling Interfaces

Fig. 2. Proposed separation of duty cycling protocols from common MAC level functionality

it is first inserted into a send buffer and only sent out over the radio once the radio
state machine has decided it should be released. The radio state machine consults
the backoff controller, clear channel assessment module, and duty cycling protocol
in order to make this decision. The clear channel assessment module checks to
make sure the radio channel is free for transmission, while the backoff controller
decides how long a packet should be kept in the buffer before being sent over the
radio (both initially and in the face of congestion on the radio channel). Finally,
the duty cycling protocol is consulted to see if it imposes any restrictions on the
packet being sent. Since the duty cycling protocol runs in parallel with all other
radio driver functionality – transitioning the radio between its receive and idle
power states – it may decide that a packet should be backed off a little while longer
depending on its implementation.

Despite the modularized appearance of these components in the figure, most
existing radio device drivers intertwine all of this functionality into a single un-
managable component. In particular, the implementation of the duty cycling pro-
tocol is tightly integrated with the basic MAC functions that could be reused by
different duty cycling protocols. As a result, it is extremely difficult to maintain
and upgrade existing duty cycling protocols as the underlying MAC implementa-
tion evolves and is ported to different platforms. Moreover, implementing new duty
cycling protocols requires considerable effort on the part of the developer. They
typically have to re-implement the entire radio driver from scratch, prohibiting
improvements in MAC and power management technology from evolving indepen-
dently. For example, in TinyOS, the default radio drivers for the Telosb and Mica2
mote platforms each have their own implementations of BMAC and its built in Low
Power Listening capabilities. A single monolithic implementation exists for each
platform, and common functionality is not shared between them.

In our proposed architecture, we explicitly remove the duty cycling protocol from
basic MAC functionality and define a set of interfaces that allow them to interact
with one another. Each interface is designed to have a single endpoint in some
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higher level component, forcing any cross-layer protocols that use each interface
to virtualize their functionality on top of them3.Ideally, all MAC implementations
will provide each interface so that they are not limited in the types of duty cycling
protocols that can be implemented on top of them. Each interface is described in
greater detail below.

The RadioPowerControl Interface:
The first of these interfaces is RadioPowerControl. This interface allows a radio
to be switched between its active and sleep power states. It must be implemented
by all types of MAC protocols, since without it, duty cycling of the radio is not
possible.

interface RadioPowerControl {
async command void on();
async event void onDone( error );
async command void off();
async event void offDone( error );

}

The ChannelMonitor Interface:
The second interface is the ChannelMonitor interface. This interface is used to
expose clear channel assessment (CCA) capabilities of a radio. This capability is
required by all duty cycling protocols based on channel polling in order to determine
if a radio channel has any activity on it or not. If this interface is not exposed, the
use of certain duty cycling protocols (such as Low Power Listening [Polastre et al.
2004]) will not be possible.

interface ChannelMonitor {
command void check();
async event void free();
async event void busy();
event void error();

}

The PreambleLength Interface:
The third and final interface is the PreambleLength interface. This interface allows
a duty cycling protocol to dynamically change the length of the preamble associated
with a particular outgoing packet. It is intended for duty cycling protocols that
require a constant wakeup tone of a certain length to be sent (transparent to the
operation of the duty cycling protocol itself). For certain types of radios (in par-
ticular, packet radios like the cc2420 [Chipcon 2004]), the implementation of this
interface may need to be emulated by sending multiple packets with very short gaps
instead of a constant stream of preamble bytes. For duty cycling protocols that
actually rely on the transmission of short packets, this interface is not necessarily
required.

3Methods for supporting coordination of such cross layer protocols can be found in [Klues et al.

2007]
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interface PreambleLength {
async command void set( numBytes );
async command uint16_t get();

}

In addition to the interfaces presented above, the MAC layer may also need
to support time stamping for incoming and outgoing packets in order to facili-
tate the development of time synchronization protocols required by both scheduled
contention and TDMA based protocols. Time stamp data can be appended as
metadata to any packets passed up the radio stack through the Receive interface
of the MAC layer. Duty cycling protocols that exploit the use of this information
simply need to extract it from the packets as they are passed up the stack.

3.3 Supporting Multiple Applications

By exposing the interfaces described in the previous section, a multitude of different
duty cycling protocols can be built on top of a common underlying radio stack.

With these duty cycling protocols in place, our architecture is now able to pro-
vide a framework for coordinating different power management requirements from
multiple applications. For purposes of this discussion, an application refers to any
component in the system that wishes to specify a set of power management re-
quirements to any duty cycling protocol existing at the link layer. Our framework
provides a mediator that resolves any conflicts among these applications’ stated
power requirements.4 Figure 3 illustrates this framework for coordination.

DutyCycle Interface

Application 2

MAC

PHY

DutyCycle Table

OnMode

OffMode

PreambleLengthChannelMonitor RadioPowerControl

Application 0 Application 1

Duty Cycling Protocol

Power Coordinator

Fig. 3. Architecture for enabling the coordination of differing application requirements.

4If only a single application happens to be running on the system, this mediator need not be

included in its compilation.
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Applications insert parameters into a Power Management Table using a set of pre-
defined interfaces. The interfaces depend on the power management protocol in use.
Protocols based on scheduled contention provide interfaces that allow applications
to specify their on/off intervals, while protocols based on channel polling provide
interfaces that allow them to specify a polling period and a preamble length. Proto-
cols based on a hybrid of these two approaches require both sets of interfaces. Rows
in the Power Management Table represent a single parameter type into which an
application may supply a value. Columns are used to separate the values supplied
by different applications. For example, all parameters supplied by ‘Application 1’
in the figure will be stored in column 1, and all parameters supplied by ‘Application
2’ will be stored in column 2.

A Power Coordinator is used to coordinate the use of all parameters supplied to
the Power Management Table by each application. It decides how to combine these
parameters in order to provide a coherent radio power management solution that
satisfies the needs of all applications as best it can. The Power Coordinator can
be customized based on the requirements of the applications and the underlying
duty cycling protocol on which they rely. We present two coordination policies
in Section 5.2 as concrete examples that have been implemented in TinyOS.We
envision that a library of common coordination techniques (similar to software
design patterns) will be created that will be able to meet the needs of different
types of applications.

4. IMPLEMENTATION

To enable the flexible integration of different radio power management protocols,
the cc1000 and cc2420 radio stacks in TinyOS-2.x have been altered to expose
the interfaces described in section 3.2. We have chosen to use TinyOS-2.0 as our
implementation platform since it is still maturing and does not yet have many radio
power management protocols developed for it. Our hope is that as developers start
porting implementations of their protocols from TinyOS-1.x to TinyOS-2.x, they
will do so within the architecture presented here. Doing so will ease the development
of these protocols and create a rich set components for use within the architecture.

In this section, we describe the implementations of several different duty cycling
protocols using the interfaces defined in section 3.2, as well as several coordina-
tion policies in our architecture. We note that the implementations provided in
this section are just examples that demonstrate the flexibility and efficacy of the
architecture presented in this paper. More sophisticated duty cycling protocols
and coordination policies can be implemented within the framework provided here.
policies, but rather the architectural framework within which they can be devel-
oped.

4.1 Duty Cycling Protocols

In this section we describe sample implementations of both the polling based Low
Power Listening (LPL) protocol [Polastre et al. 2004] and a simple scheduling based
protocol called Simple Synchronous Sleeping (SSS). A third protocol that we call
Basic Synchronous Sleeping (BSS) is also introduced. It is functionally similar
to SSS, but differs in the type of interface it provides to its users. By providing
implementations of both polling based and scheduling based duty cycling protocols,
ACM Journal Name, Vol. V, No. N, Month 20YY.
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we are able to demonstrate the flexibility introduced by this new architecture.

4.1.1 Low Power Listening. LPL allows a radio to sleep for long periods of time,
periodically polling the radio channel to check if there are any incoming packets. If
no packet is present, it goes back to sleep for an amount of time equal to the node’s
polling interval. Packets are sent with preamble lengths equal to the size of the
polling interval so that the destination node is guaranteed to be awake when the
packet is sent. LPL allows a user to specify two different parameters: the time inter-
val between subsequent checks for activity on the radio channel, and the preamble
length for outgoing packets. We have implemented Low Power Listening on top of
the interfaces presented in section 3.2. Figure 4 shows our new implementation of
LPL as a separate component, and how it uses the standard interfaces defined in
the previous section to interact with the modified B-MAC that no longer includes
LPL.

This figure depicts three situations in which the new LPL may use the interfaces
provided by the MAC layer to perform its sleep scheduling duties. During startup
(Figure 4(a)), an application specifies the LPL mode of operation (i.e. the check
interval to use along with its corresponding preamble length) through the Lpl in-
terface provided by LPL (1). The MAC layer then retrieves the newly specified
preamble length through the PreambeLength interface (2), and LPL turns the ra-
dio off through the RadioPowerControl interface (3). Once the radio has been
completely shut down (4), a timer is set based on the check interval specified by
the application (SLEEP TIME)(5).

One of two conditions could then occur. In both cases (Figure 4(b), 4(c)) the
timer will expire (1) and the channel will be checked for activity (2). An event
will then come back signifying that the channel is either busy or free (3), and the
timer will be reset with one of two values. If the channel was free (Figure 4(b)), the
timer is reset to its check interval length (SLEEP TIME)(4) and the radio is shut
off (5)(6). If the channel is busy, however,(Figure 4(c)) the timer is set to allow
an entire packet to be received (MAX PACKET LENGTH)(4), and the radio is
turned fully on (5)(6).

4.1.2 Scheduling based Duty Cycling Protocols. We have also designed and im-
plemented a scheduling based duty cycling protocol known as SSS (Simple Syn-
chronous Sleeping) on top of our interfaces. SSS relies on global time synchroniza-
tion of all nodes in a network to precisely control their duty cycles. This protocol is
intended as an example of how a scheduling based protocol could be implemented,
rather than a replacement for more robust protocols. This protocol allows the duty
cycle of the radio to be tuned through the following interface:

interface RadioDutyCycling {

command error_t setDutyCycle( on, off );

command error_t setOnTime( onTime );

command error_t setOffTime( offTime );

event void beginOnTime();

event void beginOffTime();

}

A higher layer uses this interface to set the duty cycle of the radio and be notified
whenever it has been switched on or off. Since the start of every radio’s duty
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(a)

(b)

(c)

Fig. 4. Interaction of platform independent LPL implementation with radio level interfaces. The

RadioCsmaC component represents a MAC layer with CCA capabilites built into it, and therefore

provides the ChannelMonitor interface.

cycle must be synchronized, all nodes having the same duty cycle will be able to
communicate with each other during the on time of the radio (using CSMA/CA)
and conserve energy during the off time. Figure 5 shows our implementation of SSS
and how it uses the interfaces presented in the previous section to interact with the
radio.

During startup (Figure 5(a)), an application specifies the mode of operation for
SSS (length of on and off times within a single duty cycle period) through the
RadioDutyCycling interface (1). A timer is then set to the on time specified by
the application (2), and the radio is switched on (3). Once the radio has been fully
switched on (4), the application is signaled notifying it of this event (5). After this
timer expires, SSS alternates the on and off states of the radio according to the
time intervals specified by the application. The steps taken in each situation can
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a)

(b)

(c)

Fig. 5. Interaction of platform independent SSS implementation with radio level interfaces. The

RadioC component represents a MAC layer which doesn’t necessarily provide CCA capabilites,
and therefore doesn’t need to provide the ChannelMonitor interface.

be seen in in Figure 5(b) and Figure 5(c) respectively.
The third protocol we have implemented is BSS (Basic Synchronous Sleeping).

Both SSS and BSS require time synchronization for all nodes in a network, and they
both turn the radio on and off for certain time durations as specified by the user.
The primary difference between the two is that SSS allows an application to specify
a periodic radio duty cycle, while BSS requires that an application explicitly request
the radio to be turned on or off just before making each transition. This allows the
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on and off periods to be changed on every transition rather than requiring them
to be periodic. SSS could, in fact, be simulated using BSS by always specifying
the same on and off times every time the appropriate transition was supposed to
occur. Because of this flexibility in changing on and off times at every transition,
BSS has the capability of supporting more sophisticated scheduling algorithms as
well as integrating different schedules supplied by multiple applications.

An application can inform BSS when (as well as for how long) to power the radio
on and off using the following interface:

interface DutyCycleTimes {
command turnOnFor( onTime );
command turnOffFor( offTime );
event void ready();

}

Calling the turnOnFor() and turnOffFor() commands does not necessarily in-
dicate that the radio will be turned on or off immediately. These commands are
a way of specifying the on and off times that will be used the next time BSS sig-
nals the ready event. To duty cycle a radio, an application can alternate calls to
turnOnFor() and turnOffFor() within the body of the ready() event. If no calls
to turnOnFor() or turnOffFor() are made between subsequent ready() events,
the power state of the radio remains unchanged and the next ready() event is
signaled after the same amount of time it took to receive the previous ready()
event.

Our current implementations of SSS and BSS use a simple time synchronization
scheme that operates in a single-hop network. Under this scheme, all nodes other
than the base station turn on their radio interfaces once they are booted, and
leave it on until they have a received a synchronization packet. Once the base
station is started, it sends the synchronization packet, and all nodes in the network
start a timer simultaneously. There are no synchronization updates and clock
drift is not taken into consideration. If one of the nodes happens to not hear
the synchronization message, then it will not become synchronized and the entire
network will need to be rebooted. It is left as future work to implement more
sophisticated synchronization protocols using the time stamping features provided
by the MAC layer [Elson et al. 2002; Ganeriwal et al. 2003; Maroti et al. 2004].

4.1.3 Discussion. In addition to the simple duty cycling protocols presented
here, more complicated duty cycling protocols such as TRAMA, DRAND, 802.15.4,
and SCP-MAC can also be implemented within this architecture. We consider these
protocols as examples because DRAND is a pure TDMA based protocol, TRAMA
is a TDMA based protocol that contains some elements of scheduled contention,
and both 802.15.4 and SCP-MAC are representative hybrid protocols that combine
features present in TDMA, scheduled contention, and polling based protocols. In
addition to the interfaces provided by our architecture, TRAMA, 802.15.4, and
SCP-MAC would use the time stamping features provided by the MAC order to
implement their time-synchronization components. These three protocols would
also use the underlying CSMA/CA capabilities of the radio to contend for use of
the radio channel when appropriate.
ACM Journal Name, Vol. V, No. N, Month 20YY.



Link Layer Driver Architecture · 15

TRAMA and DRAND only require the use of the RadioPowerControl interface
to turn the radio on and off in the slots setup by the TDMA schedules they produce.
In the case of TRAMA, these would be the transmission slots setup for scheduled
transmission of packets between all nodes; packets sent in TRAMA’s signaling slots
would contend for the channel using the CSMA/CA capabilities of the radio. In
the case of DRAND, collisions are allowed between nodes during the initial setup
phase and all subsequent transmissions are made according to the TDMA schedule
that results from it.

802.15.4 uses the RadioPowerControl interface to turn on the radio for both
its contention access period (CAP) and its contention free period (CFP). During
the CAP it would use CSMA/CA to send and receive messages over the radio and
during the CFP it would use a TDMA schedule to decide in which guaranteed times
slots a node should be sending. After both the CAP and CFP, the radio would be
turned off again via the RadioPowerControl interface.

SCP would only use the RadioPowerControl interface to turn the radio on for
the reception of packets, and off again once all packets were received. It would
additionally require the ChannelMonitor interface to perform its channel polling
capabilities and the PreambleLength interface to adjust the number of preamble
bytes associated with any outgoing packets. More details on a full implementation
of SCP, as well as four other CSMA and TDMA based protocols built on top of the
architecture presented here can be found in [Klues et al. 2007].

4.2 Coordination Policies

We now present how two different coordination polices can be implemented using
the mechanisms described in section 3.3. We note that different systems may de-
sire different coordination policies. We provide the two coordination policies just
as examples to demonstrate the capability of our architectural framework to co-
ordinate multiple power management requirements. One policy coordinates the
use of different duty cycling requirements from multiple applications, while the
other coordinates a backbone maintenance protocol with these same duty cycling
requirements. We note that these policies are only examples used to demonstrate
the flexibility of our architecture in incorporating different coordination policies. In
practice the choice of coordination policies is dependent on the specific application
requirements and the duty cycle protocol.

4.2.1 Combining Duty Cycle Requirements. We have implemented a coordina-
tion policy that combines different duty cycling requirements specified through the
RadioDutyCyling interface. The parameters passed to this interface are stored in
a Power Management Table, and a Power Coordinator is used to combine these
requirements to produce a single coherent duty cycling schedule. This schedule is
used to inform BSS of the on and off times it should use when duty cycling the
radio. In the implementation, the Power Coordinator aggregates the duty cycles
specified by multiple applications according to an OR policy as shown in Figure 6.

This coordination policy is as follows. (1) All duty cycles from all applications
are synchronized to begin at the same time instant. (2) They all run periodically
according to their own schedule. (3) If any of the duty cycles requires the radio
to be on at any particular point in time, the radio will be turned on. (4) Only if
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Fig. 6. Aggregation of multiple duty cycles

all duty cycles indicate that the radio should be turned off will the radio ever be
turned off.

There exist two different approaches to implement the above coordination policy.
First, the coordinator can pre-compute and store a periodic schedule whose length
equals the least common multiple (LCM) of all applications. The on and off times
of the radio can be obtained by efficient table lookups from the schedule. In the
second approach, the coordinator can compute the on and off times of the radio at
each transition point and inform BSS on the fly. Since no pre-computed schedule
needs to be stored, this approach minimizes the storage overhead. However, it
imposes high computational complexity when the number of different duty cycles
is large. In this work, we adopt the first approach. Figure 6 illustrates the pre-
computed schedule. We can see that ‘Duty Cycle 0’ has an on time duration of
200ms and an off time duration of 800ms, while ‘Duty Cycle 1’ has both an on
and off time duration of 200ms. The period of ‘Duty Cycle 0’ is therefore 1000ms,
while the period of ‘Duty Cycle 1’ is just 400ms. In order to find the period of
the ‘Aggregate Duty Cycle’ schedule, the least common multiple of all duty cycles
must be determined. In this case it is 2000ms. Since multiple on and off periods
will exist within one period, BSS is more appropriate than SSS for executing the
aggregated schedule.

4.2.2 Coordination between Duty Cycling and Backbone Protocols. The second
coordination policy allows a backbone maintenance protocol to work together with
duty cycling protocols. Backbone protocols save energy by controlling the spatial
density of active nodes, while duty cycling saves energy by controlling the temporal
frequency of radio activity. By combining the energy benefits provided by the two
different types of protocols, this coordination policy is able to save more energy
than using of either one of these protocols individually.

The backbone based protocol we use is known as PEAS [Ye et al. 2003]. We now
briefly discuss the basic operation of PEAS and the details can be found in [Ye
et al. 2003]. When nodes first wake up in a PEAS enabled network, they send out
a probing message to determine if any of their neighboring nodes are awake and
operating. If they do not hear any responses, they decide to become active and turn
their radios on accordingly. Once a node has become active, it will remain active
until its power supply has been depleted. Active nodes take on the responsibility of
responding to probing messages sent by inactive nodes. If inactive nodes hear one
of these responses, they return immediately to sleep and wait some predetermined
amount of time before sending out the next probe. The amount of time they have to
wait changes dynamically based on the number of active nodes within their probing
ACM Journal Name, Vol. V, No. N, Month 20YY.
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range as well as the frequency with which other inactive nodes send out their probing
messages. As a result, the network maintains a backbone composed of active nodes
while all other nodes run in a low duty cycle. We have implemented a lightweight
version of PEAS that uses the same probe/reply mechanism as described above,
but uses a fixed delay time between each probing message.

We now describe an application scenario in which PEAS can be combined with a
duty cycling protocol to achieve significant more energy saving while still meeting
the spatial and temporal sampling requirements of the application. Suppose a data
collection application requires the temperature of a region to be reported to the
base station every 10 seconds. This requirement can be translated into a radio duty
cycle. For instance, in a period of 10 seconds, a data collecting node only wakes up
for 2 seconds (to transmit its own data and forward the data from neighbors) and
remains asleep for 8 seconds. This duty cycle is referred to as application duty cycle
hereafter. In addition, the application specifies a minimum spatial granularity of
the gathered data in the form of “one sample in every 10 m range”. To reduce
radio activity, PEAS can be run to maintain a set of active nodes whose probing
range is 10 m while all the other nodes operate in a low duty cycle, e.g., wake up
for one second in every 20 seconds. This duty cycle is referred to as PEAS duty
cycle hereafter. To maximize the network energy saving, the backbone nodes chosen
by PEAS can operate in the application duty cycle. As discussed previously, the
backbone nodes must exchange messages with inactive nodes when they wake up
and hence they must run the PEAS duty cycle as well. Therefore, the application
and PEAS duty cycles need to be combined on the backbone nodes while only
PEAS duty cycle is needed for inactive nodes. Fig. 7 illustrates a network with
backbone and inactive nodes, as well as the duty cycles run by them.

The coordination between PEAS and the duty cycle protocol that is described
above can be easily implemented in our architecture. Fig. 8 shows the instantiation
of our power management framework on a backbone node when both protocols
run simultaneously. The power management table has three columns that contain
the parameters of three different duty cycles. Note that these parameters can be
filled in through the DutyCycle interface separately by both PEAS and the sensing
application themselves. As the table shown in the figure is for a backbone node, a
special duty cycle, PEAS active, whose OffTime is zero is specified in the table. This
indicates that the node should remain active if only PEAS is running. Note that
PEAS will not specify the PEAS active duty cycle in the power management table
if it determines that the node is not a backbone node. The power coordinator uses
the following logic to combine PEAS with the duty cycle protocol. When a duty
cycle with zero OffTime is found in the power management table, the coordinator
aggregates the PEAS duty cycle and the application duty cycle according to the
same OR policy as described in Section 4.2.1. Otherwise, the node is an inactive
nodes and only PEAS duty cycle is used. The duty cycle output by the power
coordinator is then passed to BSS that switches the radio on/off accordingly.

A key advantage of combining PEAS and the duty cycling protocol within the
architecture is that neither the implementations of PEAS, BSS, nor the duty cy-
cling protocol needs to be altered in order to achieve these energy savings. All
coordination is handled by the implementation of the coordination policy itself.
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5. EVALUATION

This section presents the empirical evaluation of our architecture. The first set of
experiments evaluates the efficiency of the uniform interfaces between duty cycling
protocols and the MAC in terms of both performance and code size. The second set
of experiments evaluates the effectiveness of our framework in coordinating the duty
cycle requirements of multiple applications. The final set of experiments evaluates
the coordination of a backbone protocol and duty cycle requirements of multiple
applications.

5.1 Efficiency

The first set of experiments involve comparing the monolithic implementation of
Low Power Listening (LPL) on the cc1000 radio stack with the one designed for
use within our architecture. Our experimental settings are the same as the ones
presented for the full B-MAC implementation in [Polastre et al. 2004]. We also
compare the difference in the code size between the two implementations. By
showing that our implementation of Low Power Listening is comparable to the
original one in terms of both performance and code size, we are able to demonstrate
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that our architecture provides just as efficient a framework for implementing it as
the original one. Since our implementation is not implemented within the MAC
component of the default radio stack, however, it demonstrates the level of flexibility
made possible by our architecture.

We first measure throughput vs. number of nodes in a single hop network. There
is one receiver, with a variable number of senders from 1 to 4. All senders are
equidistant from the receiver at 2 feet. Each sender transmits as often as possible
with messages containing 38 bytes of data and 8 preamble bytes. We measure the
total throughput (bits per second) at the receiver over 2 minutes. The results are
given in Figure 9.
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Fig. 9. Throughput vs. Number of nodes at 100% duty cycle for two different LPL implementations

With only one node in the network, performance between the two implementa-
tions is almost identical. While the original LPL implementation achieves slightly
higher throughput for two and three nodes, the results for the two implementations
are comparable again for four and five.

Next, we measure the delivery latency vs. number of hops in a fixed route multi-
hop network. Nodes are placed in a chain, with the first node being both the source
and the sink node. Messages are sent from one node to the next until the last node
in the chain is reached. Messages are then sent in reverse back to the original
sender. The number of nodes varies from 2 to 5, resulting in 2, 4, 6, and 8 hops
respectively. The sender sends 20 messages, each containing 38 bytes of payload
and a variable number of preamble bytes depending on the length of the LPL check
interval that has been selected. LPL check intervals of “always on”, 800ms, and
1600ms were chosen, and the average latency from source to sink of each data
packet was measured. The results are given in Figure 10. In this experiment, we
see that the results for both LPL implementations are identical for all measured
check intervals.

Table I shows the difference in code size for each implementation when they are
compiled into the applications used in the experiments above. As expected, both the
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Original LPL New LPL

RAM/ROM RAM/ROM

SenderApp 383/11956 394/12350

ReceiverApp 705/15098 716/15560

Table I. LPL Memory Footprint (Bytes)

RAM and ROM sizes for the new implementation are slightly larger than for original
one. This extra overhead is less than 5% in both cases, however, and therefore
negligible. Such a small increase in code size is possible due to the aggressive cross-
component inlining and other optimizations made available by the full-program
analysis of TinyOSs nesC compiler. The main contributor increase we actually
see comes from the extra timer required by the new LPL implementation. In the
original implementation of LPL, the timer used to switch between the different
states of the radio was shared by the LPL implementation. Other contributors
include additional flags and logic needed to coordinate the use of the interfaces now
provided by the radio stack.

The second set of experiments shows the performance characteristics of our SSS
implementation. The results of these experiments show that it is easy to reuse the
implementation of this sleep scheduling policy on top of two very different radio
stack implementations. Results are given for both Mica2 and TelosB.

The setups for each experiment are the same as those used for LPL. For measur-
ing throughput vs. number of nodes, we ran SSS at duty cycles of 100%, 47%, and
20%, and measured the total throughput for each duty cycle over 2 minutes. For
measuring latency vs. number of hops, we ran SSS at a 50% duty cycle, and mea-
sured the average latency from source to sink for a single packet. Each experiment
was ran multiple times, and the numbers presented are an average of each of those
runs.

Figures 11 and 12 show that SSS is able to deliver more data as its duty cycle
is increased. As expected, TelosB achieves higher throughput for all duty cycles in
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both experiments because data is sent at a much higher rate by the cc2420 radio
than by the cc1000 radio.

Figure 13 shows the latency associated with running SSS. Once again, the higher
data rate of the cc2420 radio accounts for the difference in performance between
the TelosB and the Mica2 platforms in this experiment.

Overall, the results of these experiments show the following: (1) Implementing
LPL using our framework incurs a negligible performance penalty. (2) Exposing
the proposed MAC layer interfaces produces a slight increase in code size, but al-
lows much more flexibility in choosing the most appropriate duty cycling protocol.
(3) Both channel polling and scheduled contention protocols can easily be imple-
mented on top of these interfaces and used by different mote platforms. These
implementations produce results typical of these types of protocols.
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5.2 Coordinating Multiple Duty Cycles

In this section, we evaluate the architecture in terms of the different coordination
policies used to combine duty cycles specified by multiple applications. The first
experiment demonstrates the ability to combine the duty cycling requirements of
multiple applications in a way that is transparent to each of them. The second
one presents the results obtained from coordinating the duty cycling requirement
from multiple applications for use with PEAS and BSS. The network used in this
set of experiments is a one-hop cluster consisting of a master TelosB node and a
number of slave TelosB nodes. Each slave node runs an application that periodically
sends packets to the master node. Each application under test is simply a dummy
application that sets a duty cycle on the radio, takes a sensor reading, and flushes
bytes out over the radio at specific intervals.

Although each node only runs a single application, up to 6 different applications
can be running in the network at any given time. The on time of the duty cycle
for each application is 200ms, with off times of 200ms, 600ms, 1.4s, 3s, 6s, and
12.6s, respectively. Each application sends a packet of 66 bytes (including header
and payload) at a random time within the 200ms active period of each duty cycle.
The master node is able to receive packets from each application by running an
aggregate duty cycle according to the OR policy described in section 3.3.

The first run of experiments consists of the master node and two slave nodes
running the application with the lowest duty cycle. Two more slave nodes running
the application with the next highest duty cycle are then added in each following
run. Each run lasts for 320 s and is performed only once. Figure 14 shows the
delivery ratio measured at the master node for each run. We can see that the
delivery ratio remains close to 100% as the number of applications increases. Once
all six applications (total 12 nodes) have been added to the network, however, we
do begin to see a slight increase in the number of packets that are lost.

Figure 15 shows the duty cycle measured at the master node. A 100% duty cycle
corresponds to the radio always being on, and a 0% duty cycles corresponds to the
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radio always being off. The duty cycle was calculated by instrumenting the cc2420
radio stack with a 32 KHz timer in order to measure the amount of time spent
in each radio state. We can see that the duty cycle measured at the master node
matches the predicted curve, verifying the correctness of the combination logic of
the aggregator. As a baseline we also show the predicted duty cycle of the master
node if no aggregation policy were used. This duty cycle is simply calculated as the
sum of the duty cycles of all applications in the network. As shown in Figure 15,
performing the combination will always yield a lower overall duty cycle than not
performing it.

The results in this section demonstrate that this coordination policy is capable
of correctly combining the duty cycles specified by multiple applications, and that
combining these duty cycles according to some aggregation policy can potentially
lead to lower energy consumption.
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5.3 Coordinating Duty Cycles with PEAS

In this section, we evaluate the architecture in terms of the coordination policy
allowing PEAS to be combined with applications specifying different duty cycles.
The network consists of a master Telosb node and 15 slave Telosb nodes placed
within a 5× 3 grid. Each slave node runs both PEAS as well as one of six different
applications. Each application runs with a duty cycle period of 3.2s. The on times
of each duty cycle range from 200ms to 1.2s in steps of 200ms. Nodes designated
as ‘inactive’ by PEAS run with a duty cycle period of 16s and an on time of 200ms.
Inactive nodes send probe messages at some random time within their on periods,
and active nodes send messages from their applications at some time during their
on periods. Although all nodes are within communication range of one another,
the probing range of PEAS is limited to 1.5 times the grid width.

In this set of experiments we measure the total energy consumed by the radio for
all nodes in the network. The amount of energy used by each radio is measured as
the sum of the energy consumed in each of four different radio states: idle, receiving,
transmitting, and sleeping. We first measure the total time that the radio spends
in each radio state by instrumenting the Telosb cc2420 radio stack with a 32 KHz
timer. We then calculate the energy consumed in each state by multiplying the
total time the radio spends in that state by the power consumed in that state.
These power consumption values are all taken directly from the cc2420 data sheet
[Chipcon 2004]5.
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As a baseline, we first measure the power consumption of the network when
only PEAS is enabled and all active nodes have their radios powered all the time.
We then disable PEAS and allow all nodes to run their duty cycling applications,
without PEAS specifying certain nodes as inactive. Finally, we measure the power

5There are two different sleeping modes available on the cc2420. In the sleeping mode benchmarked
here, the transmitter is turned off while the crystal oscillator and voltage regulator remain on. In

the data sheet this state is referred to as IDLE.
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consumption when these two policies are combined: PEAS is enabled and only
active nodes are able to run their application. All experiments were ran multiple
times, and the numbers presented are an average of these runs. Figure 16 shows
the total energy consumption of the network in each situation. The baseline is
represented by a straight line.

We can see from Figure 16 that the policy combining PEAS with each applica-
tion duty cycle yields the lowest energy consumption. These energy savings are
achieved by (1) allowing PEAS to choose the subset of nodes that will actually
run each application, and (2) allowing those nodes chosen by PEAS to run at their
application-specified duty cycle. Overall, the energy consumption under the com-
bined policy is 57− 86% lower than running PEAS alone and 42− 63% lower than
duty cycling alone.

The results in this section demonstrate the power of combining complementary
power management protocols using our architectural framework. By using the
Power Coordinator to combine the use of the these protocols, more energy can be
saved than by using either one of them individually.

6. CONCLUSION

In this paper, we have presented link layer support towards realizing a unified radio
power management architecture for use in wireless sensor networks. The architec-
tural support we have presented is comprised of two key components: (1) a set of
standard interfaces allowing different duty cycling protocols to be implemented on
top of a common radio stack, and (2) an abstraction layer that can incorporate the
use of different coordination polices for coordinating the duty cycling requirements
of multiple applications running on the system.

We have demonstrated the flexibility of this architecture through the development
of several different duty cycling protocols, and have conducted experiments in order
to evaluate their performance. We have also shown how the architecture can be used
to coordinate the duty cycling requirements of multiple applications. By replacing
only the coordination policy, we demonstrate that it is possible to coordinate these
requirements with those of a backbone based power management protocol as well.

In the future, we plan to build on the ideas presented in this paper to support
power management protocols existing at layers other than the link layer. Specifi-
cally, we plan to add support for transmission power control protocols existing at
the network layer. Another important direction for future work is to integrate this
architecture with an overall sensor network architecture [Berkeley ][USC ]. Addition-
ally, we plan to integrate this architecture with the power management techniques
used by other hardware components (e.g., microcontrollers, sensors, and flash) on
a wireless sensor network platform [Klues et al. 2007].
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