
TOSThreads: Thread-safe and Non-invasive Preemption in TinyOS

Kevin Klues‡, Chieh-Jan Mike Liang†, Jeongyeup Paek◦, Răzvan Musăloiu-E.†,
Philip Levis?, Andreas Terzis†, Ramesh Govindan◦

‡UC Berkeley †Johns Hopkins University ◦University of Southern California ?Stanford University
Berkeley, CA Baltimore, MD Los Angeles, CA Stanford, CA

klueska@cs.berkeley.edu {cliang4, razvanm, terzis}@cs.jhu.edu
{jpaek, ramesh}@usc.edu pal@cs.stanford.edu

Abstract
Many threads packages have been proposed for program-

ming wireless sensor platforms. However, many sensor net-
work operating systems still choose to provide an event-
driven model, due to efficiency concerns. We present TOS-
Threads, a threads package for TinyOS that combines the
ease of a threaded programming model with the efficiency
of an event-based kernel. TOSThreads is backwards com-
patible with existing TinyOS code, supports an evolvable,
thread-safe kernel API, and enables flexible application de-
velopment through dynamic linking and loading. In TOS-
Threads, TinyOS code runs at a higher priority than appli-
cation threads and all kernel operations are invoked only
via message passing, never directly, ensuring thread-safety
while enabling maximal concurrency. The TOSThreads
package is non-invasive; it does not require any large-scale
changes to existing TinyOS code.

We demonstrate that TOSThreads context switches and
system calls introduce an overhead of less than 0.92% and
that dynamic linking and loading takes as little as 90 ms
for a representative sensing application. We compare differ-
ent programming models built using TOSThreads, including
standard C with blocking system calls and a reimplementa-
tion of Tenet. Additionally, we demonstrate that TOSThr-
eads is able to run computationally intensive tasks without
adversely affecting the timing of critical OS services.
Categories and Subject Descriptors

D.4 [Operating Systems]: Organization and Design; D.1
[Software]: Programming Techniques

General Terms
Design, Performance

Keywords
TinyOS, Multi-Threading, Sensor Networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’09, November 4–6, 2009, Berkeley, CA, USA.
Copyright 2009 ACM 978-1-60558-748-6 ...$5.00

1 Introduction
Many mote operating systems use event-driven execution

to support multiple concurrent execution contexts with the
memory cost of a single stack [9, 15, 18]. Network protocols,
storage subsystems, and simple data filters can be easily de-
veloped in this model, as they typically perform short com-
putations in response to I/O events. More generally, there
are sound reasons for mote OSs to be event-based: given the
motes’ memory and processing constraints, an event-based
OS permits greater concurrency than other alternatives.

The event-driven programming model is less well-suited
for developing higher-level services and applications. In
this model, application developers need to explicitly man-
age yield points or continuations, or partition a long-running
computation to avoid missing events. Compression is a con-
crete example of a long-running computation that can plau-
sibly be implemented on advanced sensor platforms (such
as the imote2 [6]). Many sensor network applications, such
as seismic sensing [37], structural monitoring [5, 20], and
image-based sensing [17], could benefit greatly from data
compression. Indeed, Sadler et al. showed that compression
can reduce energy consumption significantly [33]. Neverthe-
less, real sensor network deployments rarely use it due to the
difficulty of implementing it in event-driven environments.

In this paper, we explore the tension between achieving
high concurrency in the face of resource constraints and hav-
ing an intuitive programming model for long-running com-
putations. While thread-based programming models have
been successful in many embedded OSs such as uC/OS [28],
FreeRTOS [1], and many others, prior attempts to use them
in the sensor network domain have had limited success.

Cooperative threading approaches, exemplified by Tiny-
Threads [27], rely on applications to explicitly yield the pro-
cessor, thereby placing the burden of managing concurrency
explicitly on the programmer. As we show in Section 2,
this task can be quite difficult for long-running computa-
tions such as compression. These computations are data-
dependent, so the commonly-used strategy of placing fixed
yield points in the code can result in highly-variable inter-
yield intervals. To ensure non-invasive behavior with timing
sensitive OS services, the programmer must design sophisti-
cated and burdensome strategies that explicitly monitor the
execution time of the application.

Preemptive threading approaches, exemplified by Tiny-
MOS [35] and Contiki’s [9] optional preemptive threading
library, have had some limitations as well. TinyMOS [35],
an extension of the thread-based Mantis OS [2], runs TinyOS
inside a dedicated Mantis thread, but requires placing a giant
lock around most of the TinyOS code. This approach limits
overall concurrency and efficiency, as the TinyOS thread is
only able to service one application thread at a time. Con-
tiki [9], an event-based operating system similar to TinyOS,
provides hooks for implementing preemptive threading on
top of its event-based kernel, but provides limited mecha-
nisms to control re-entrancy when invoking shared OS ser-
vices. As we discuss in Section 2, the lack of standardized
mechanisms for synchronizing thread-based application pro-
cessing with event-based kernel processing can lead to some
subtle race conditions distributed across a large body of code.

We present TOSThreads, a fully preemptive threads pack-
age for TinyOS. TOSThreads resolves the tension between
the ease of thread-based programming and the efficiency of
event-based programming by running all event-based code
inside a single high priority kernel thread and all application
code inside application threads, which only execute when-
ever the kernel thread becomes idle. Application threads in-
voke kernel operations via message passing, so that applica-
tion threads never run kernel code themselves. This archi-
tecture ensures that all TOSThreads operations that invoke
the kernel are both thread-safe (i.e., thread preemption can-
not cause the kernel to fail) and non-invasive with respect to
timing-sensitive kernel operations (i.e., thread priorities are
always preserved).

While each of the techniques adopted by TOSThreads to
achieve these goals are not novel themselves, TOSThreads
is the first threads package to combine them in a way that
makes preemptive threading a viable option for sensor net-
works. For example, while message passing has been widely
studied in the context of microkernel architectures, the over-
head induced by virtual memory has restricted widespread
adoption of this technique in general-purpose OSs. TOSThr-
eads revives this technique since low-power microcontrollers
do not suffer the major costs of context switches seen by
high-performance processors (virtual memory, TLB flushes,
pipelined execution).

In addition to thread-safety and non-invasiveness, the de-
sign and implementation of TOSThreads is influenced by
three secondary goals chosen to encourage widespread adop-
tion: backwards compatibility with TinyOS, an easily exten-
sible kernel API, and support for flexible application devel-
opment. To our knowledge, prior work on threading libraries
for sensor networks has not attempted to collectively achieve
each of these goals.

As the de facto standard development platform for many
sensor network applications, TinyOS has been ported to a
wide variety of platforms and contains many subsystems
that are in wide use today (e.g. routing, time synchroniza-
tion, dissemination, collection, etc.). In order to preserve
backwards compatibility with these subsystems, TOSThre-
ads must preserve all of the efficiency and timing constraints
imposed by them. TOSThreads achieves this goal by en-
forcing a strict priority between event-based TinyOS code

and application threads. TinyOS code is guaranteed to take
precedence over application threads, and application threads
simply run as background tasks when the TinyOS thread has
nothing more to do.

TOSThreads second goal of extensibility ensures that de-
velopers are able to easily integrate new services into the
TOSThreads kernel API as more and more subsystems con-
tinue to be developed for TinyOS. TOSThreads achieves this
goal by providing a well defined API of blocking system
calls based on message passing. System developers can eas-
ily evolve this API by wrapping additional blocking system
calls around any new event-driven TinyOS service. More-
over, by exporting this API in both nesC [13] and ANSI
C, we allow developers to implement efficient applications
without the need to learn a new language.

TOSThreads final goal of support for flexible application
development enables programmers to develop their applica-
tions using multiple programming paradigms and provide a
way to dynamically link and load executable objects received
over the network. To substantiate this claim we have reim-
plemented the Tenet programming system [14], on top of
TOSThreads. The resulting system has higher expressivity
without increasing code size. Additionally, TOSThreads has
enabled the development of a novel programming language,
Latte, a JavaScript dialect that compiles to C.

As we show in Section 5, TOSThreads is able to achieve
each of its goals with minimal overhead in terms of exe-
cution speed and energy consumption, while still efficiently
supporting time-critical OS services in the presence of long-
running background computations.

The rest of this paper is organized as follows. Section 2
provides some background on the general challenges of im-
plementing a preemptive threading library on top of an ex-
isting event-based kernel. Section 3 introduces the basic ar-
chitecture of our TOSThreads preemptive threads package.
Section 4 provides an overview of the TOSThreads imple-
mentation in TinyOS. Section 5 discusses some evaluation
results. Section 6 presents some related work, and Section 7
concludes.

2 The Challenge of Preemption
Fully preemptive threads raise a number of difficult im-

plementation challenges. The most far-reaching of these is
empowering fully preemptive application code with the abil-
ity to call kernel code. If the kernel scheduler preempts a
thread in the midst of running kernel code, it is possible that
the newly scheduled thread could end up making a system
call which will invoke kernel code as well. For correctness of
program execution, using such a preemption model requires
all kernel code to be fully reentrant, allowing any number of
threads to concurrently access the kernel at any time.

Making all kernel code fully preemptive is a daunting
task. There are three common techniques to attack the prob-
lem, of which we discuss two (cooperative threading and
kernel locking) in this section. TOSThreads uses a third ap-
proach, message passing, discussed in the next section.

2.1 Cooperative Threading
Cooperative threading avoids the challenge of kernel re-

entrancy. Instead, the kernel context switches between thr-

0.1 ms

1 ms

10 ms

0.1 ms

1 s

Always
yield at
A and B

Yield at point A each
1 5 25 50 100 200 300 400

passes

Yield at point B each
1 10 100 500 1k 2k 3k 4k

passes

Never
yield

Total execution time

Average time between yields1 s

2 s

3 s

4 s

5 s

Figure 1. Total execution time and average time between
yields of various yielding strategies for a compression al-
gorithm applied on a set of 13 gray-scale images captured
with the Cyclops platform.

eads only on a set of well-known system calls, such as I/O
operations. Kernels also typically have a yield() system
call, which does nothing except explicitly yielding the pro-
cessor to other, runnable threads. Among threads pack-
ages proposed for sensor systems, TinyThreads takes this
approach [27]. In TinyThreads, TinyOS tasks run in a ded-
icated system thread and application threads cooperatively
share the processor with this system thread.

The challenge with cooperative threading is that the cor-
rectness of the entire system depends upon application code
voluntarily yielding the processor at specific intervals. If a
thread does not relinquish the processor for a long time, then
other threads may be unable to service requests, read sensors,
or otherwise perform their normal tasks in a timely manner.
A long-running application thread can greatly delay TinyOS
tasks from running, in effect violating the TinyOS program-
ming mantra of “keep tasks short”.

Furthermore, determining the right strategy for inserting
yield points in a long running computation is a non-trivial
exercise. As an example, we examine how yield points af-
fect a simple image compression algorithm one might im-
plement on a sensor node with a camera. The algorithm has
a doubly-nested loop. The outer-loop iterates over the rows
of the image, while the inner loop compresses a single row
using run-length encoding. A similar compression algorithm
was used in the deployment described in [17].

Figure 1 shows the effect of adding an explicit yield to
the inner (point A) or the outer loop (point B) for a set of 13
images from the deployment in [17]. Simply adding a yield
to each execution of both loops introduces tremendous over-
head: the computation takes 213% longer. However, naively
inserting a yield after every ten executions of the inner loop
is no better either; assuming an inter-packet arrival interval
of 3ms, its possible that yielding this infrequently may cause
a node to start to drop packets. In fact, considering the dis-
tribution of inter-yield times shown in Figure 2, one can see
that more than half of the algorithm’s iterations would take
longer than the desired 3 ms. Moreover, the inter-yield times
actually depend on the compressibility of each image, so we
cannot even generalize the results presented here to a differ-
ent set of images using the same compression algorithm.

0 1 2 3 4 5 6 7

0

5

10

15

20

Time between yields

Time between yields (ms)

P
er

ce
nt

ag
e

(%
)

Figure 2. Distribution of the time between yields for
yielding every ten passes over point B for the set of im-
ages used in Figure 1.

Preemptive threading relieves the programmer of the bur-
den of determining when to explicitly yield the processor.
Modern operating systems all incorporate preemptive thread-
ing because the costs and dangers of cooperative threading
greatly outweigh its benefits. Making the kernel slightly
more complex with support for preemptive threading sim-
plifies all application code.

2.2 Kernel Locking
The second major approach is to put mutual exclusion

locks (mutexes) within the kernel. In the simplest variant,
the entire kernel has a single lock around it, such that only
one thread can be executing a system call at any time. This is
the approach taken in TinyMOS [35] as well as the approach
taken in early versions of the Linux kernel.

More fine-grained locking is also possible: there is a ba-
sic trade-off between the locking overhead and how much
parallelism the system can support. TinyMOS, for example,
also points out that each subsystem (radio, sensors, flash)
can have its own lock, so that one thread could access stor-
age while another sends packets. In the extreme case, locks
can be very fine-grained (e.g., per data structure).

Unlike cooperative threading, a malicious or buggy thread
in a kernel locking system cannot monopolize the processor.
The cost is that the kernel is more complex, and in the ab-
sence of parallelism the locks reduce performance. Modern
multitasking OSes (Linux, Solaris, Windows, the BSDs) all
use kernel locking, with differing lock granularities.

2.3 The Subtleties of Architecting Preemption
Before we discuss our implementation of TOSThreads, it

is useful to present a case study of our experience implement-
ing a preemptive threading library for another event-based
sensor network OS, Contiki. Given the similarities between
Contiki and TinyOS, this case study serves as a starting point
for discussing the subtleties involved in architecting a pre-
emptive threading library on top of an event-based kernel.

The Contiki source code provides documentation that out-
lines the process of extending its native threading library to
support preemptible threads. Adding this support is as sim-
ple as extending a timer interrupt handler to call its thread
scheduling function whenever it fires. While this simple ex-
tension does enable preemptive threading support for appli-
cations, it comes with some limitations.

The problem is that the Contiki kernel provides limited
mechanisms to control reentrancy when invoking shared OS
services. (i.e., the API exposed to applications is not guar-
anteed to be thread-safe). Application threads must explic-
itly synchronize on every kernel access, complicating ap-
plication code and distributing the source of potential race
conditions across a large number of functions written by a
disparate set of developers. As we discuss in the follow-
ing section, TOSThreads avoids this problem by extending
the TinyOS concurrency model to explicitly support threads
and provides a message passing interface to automatically
enforce thread-safety when invoking shared OS services.
While Contiki can inherently provide similar functionality,
there is no support for it in its current implementation.

To test what would happen if we actually launched a
set of application threads that invoked a shared OS service
without explicit synchronization, we implemented preemp-
tive threading in Contiki according to the techniques outlined
in its source code. We then ran three threads that executed
tight I/O loops. In each execution of the loop, a thread allo-
cated a memory buffer through Contiki’s MEMB abstraction
and sent it over the radio; calls to the MEMB API were not
explicitly synchronized and access to the radio was not arbi-
trated by the application. We introduced two checks to mon-
itor the behavior of the system while these three threads were
running. In the first, we checked whether the memory allo-
cator ever returned the same pointer to two different threads:
this would be caused by unsynchronized access to the allo-
cator function while modifying the memory data structure.
In the second, we instrumented the lock used by Contiki’s
CC2420 stack to check if critical sections were ever entered
by more than one thread at a time.

In both experiments, it took under a second for one of
these two checks to be violated. This speed is, of course,
somewhat artificial, due to the execution of three tight loops
(i.e., the occurrence of the fault would take much longer in a
low-power, low-duty cycle application). Nevertheless, these
experiments demonstrate (unsurprisingly), that proper syn-
chronization is critical for correct operation of the system.
Even with some level of synchronization, care must be taken
to ensure that concurrency is not prohibitively limited.

In summary, preemptive threads are a non-trivial mecha-
nism for an operating system to correctly support. Prior ap-
proaches, such as TinyMOS [35] and TinyThreads [27], limit
preemption by either discarding it completely (TinyThreads)
or limiting it to application code alone (TinyMOS). Finally,
while event-driven systems such as Contiki and TinyOS are
well-equipped to support preemptive threading, one must
take special care to avoid limiting the concurrency of the
overall system. In the following section we discuss the mes-
sage passing approach taken by TOSThreads which enables
full preemption with maximal concurrency.

3 TOSThreads Architecture
This section describes the TOSThreads architecture. It

provides an overview of the basic functionality provided by
TOSThreads, a description of its overall structure, a list of
modifications that had to be made to TinyOS to enable TOS-
Threads, a description of the flexible user/kernel boundary

Task

Scheduler

Thread Scheduler

System Calls

TinyOS

Thread

Application

Threads

Figure 3. Overview of the basic TOSThreads architec-
ture. The vertical line separates user-level code on the
left from kernel code on the right. Looping arrows indi-
cate running threads, while the blocks in the middle of
the figure indicate API slots for making a system call.

defined by TOSThreads, and a short description of the mech-
anisms available for performing dynamic linking and loading
of TOSThreads binaries.

3.1 Overview
The existing TinyOS concurrency model has two classes

of execution: synchronous (tasks) and asynchronous (inter-
rupts). These two classes of execution follow a strict hier-
archy whereby asynchronous code can preempt synchronous
code but synchronous code is run-to-completion. TOSThr-
eads extends this concurrency model to provide a third ex-
ecution class in the form of user-level application threads.
Application threads exist at the lowest level of the hierar-
chy and are prohibited from preempting either synchronous
code or asynchronous code (but are still allowed to preempt
one another). Application threads synchronize using stan-
dard primitives such as mutexes, semaphores, barriers, and
condition variables.

TOSThreads exploit message passing by running TinyOS
inside a special, high priority kernel thread dedicated to run-
ning the standard TinyOS task scheduler. When an applica-
tion thread makes a system call, it does not directly call into
or execute TinyOS code itself. Instead, it passes a message to
the kernel thread by posting a TinyOS task. Since posting a
task causes the high priority kernel thread to wake up, it will
immediately preempt the active application thread and begin
executing the system call. As TinyOS is completely non-
blocking, this execution is fast and the kernel thread quickly
returns to sleep. At this point, control returns to the thread
scheduler, allowing application threads to resume.

By using message passing, TOSThreads ensures that only
a single thread of control – the kernel thread – ever directly
executes TinyOS code. This allows core TinyOS code to ex-
ecute unchanged and requires no additional synchronization
primitives on either side of the message passing interface.
Furthermore, TOSThreads does not constrain concurrency
within TinyOS itself, as it does not introduce any limitations
on what system calls can be made. While TOSThreads can-
not remove the self-imposed concurrency limits of a TinyOS
abstraction (e.g., can only handle one outstanding operation),
it does not add any further limitations.

3.2 Structure
Figure 3 presents the overall structure of a TOSThreads

system, consisting of five key elements: the TinyOS task
scheduler, a single kernel-level TinyOS thread1, a thread
scheduler, a set of application threads, and a set of system
call APIs and their corresponding implementations. Any
number of application threads can exist concurrently (barring
memory constraints) and a single kernel thread is used to run
the TinyOS task scheduler. The underlying thread scheduler
manages the concurrency between all application threads and
the system call APIs provide an abstraction on top of the
underlying message passing interface used to communicate
with the TinyOS kernel.

There are two ways in which posted events can cause the
TinyOS thread to wake up. First, an application thread can
issue a blocking system call into the TinyOS kernel. This
call internally posts a task, implicitly waking up the TinyOS
thread to process it. Second, an interrupt handler can post a
task for deferred computation. Since interrupt handlers run
on the stack of the currently active thread, if an interrupt han-
dler posts a task, TOSThreads must context switch to the
TinyOS thread. Control eventually returns to the application
thread after the TinyOS thread has emptied the task queue.
3.3 TinyOS Modifications

Only two changes to the existing TinyOS code base are
required to support TOSThreads: a modification to the boot
sequence and the addition of a post-amble for every inter-
rupt handler. The change in the boot sequence encapsulates
TinyOS inside the single kernel-level thread before it boots.
Once it runs, TinyOS operates as usual, passing control to
the thread scheduler at the point when it would have other-
wise put the processor to sleep. The interrupt handler post-
ambles ensure that TinyOS runs when an interrupt handler
posts a task to its task queue. As discussed in Section 5,
our evaluations show these modifications only decrease the
performance of TinyOS by a negligible amount.
3.4 Flexible User/Kernel Boundary

One significant difference between TOSThreads and
other TinyOS threading implementations is that TOSThre-
ads defines a flexible boundary between user code and kernel
code. Rather than dividing code into user and kernel space
based on access rights to privileged operations, TOSThre-
ads loosely defines a conceptual user/kernel boundary as the
point in which programs switch from a threaded to an event-
driven programming model. Because all existing TinyOS
code is event-driven, any component in the current TinyOS
code base can be included in a TOSThreads kernel.

TOSThreads makes building a kernel from existing
TinyOS components a straightforward process. Just as a
traditional TinyOS application consists of the TinyOS task
scheduler and a custom graph of components, a TOSThre-
ads kernel consists of the task scheduler, a custom graph of
components, and a custom set of blocking system calls. Each
of these calls is a thin wrapper on top of an existing TinyOS
service (e.g., active messaging, sensing, multi-hop routing).
The wrapper’s sole purpose is to convert the non-blocking

1In what follows, we use the terms “TinyOS thread” and “kernel
thread” interchangeably.

split-phase operation of the underlying TinyOS service into
a blocking one based on message passing. The API that a
kernel ultimately provides depends on the set of TinyOS ser-
vices its designer wishes to present to applications.

Through this flexible user/kernel boundary, TOSThreads
enables the kernel to evolve in support of diverse user-level
code bases. We demonstrate this ability by developing two
custom TOSThreads kernels: one that provides a standard
set of TinyOS services (Section 4.3) and one that implements
the Tenet API (Section 5.6).

3.5 Linking and Loading
Defining an explicit user/kernel boundary creates the pos-

sibility of compiling applications separately and dynamically
linking them to a static kernel. TinyLD is the TOSThreads
component implemented to provide this functionality. To use
TinyLD, users write a standalone application that invokes
system calls in the kernel API. This application is compiled
into an object file and compressed into a custom MicroExe
format we have developed. The compressed binary is then
transported to a mote using standard methods (e.g., serial
interface, over-the-air dissemination protocol, etc.). Once
on the mote, TinyLD dynamically links the binary to the
TinyOS kernel, loads it into the mote’s program memory and
executes it.

4 Implementation
This section describes the implementation of TOSThre-

ads, including the internals of the thread scheduler, the thread
and system call data structures, and the dynamic linking and
loading process. While most of the TOSThreads code is
platform independent, each supported platform must define
platform-specific functions for (1) invoking assembly lan-
guage instructions to perform a context switch and (2) adding
a post-amble to every interrupt handler. Defining these func-
tions is a fairly straightforward process, and support ex-
ists for Tmote Sky, Mica2, Mica2dot, MicaZ, Iris, eyesIFX,
Shimmer, and TinyNode motes. As of TinyOS 2.1.0, TOS-
Threads is included as part of the standard TinyOS distribu-
tion and documentation on implementing applications that
use it can be found on the TinyOS documentation wiki [34].

4.1 The Thread Scheduler
TOSThreads exposes a relatively standard API for cre-

ating and manipulating threads: create(), destroy(),
pause(), resume() and join(). These functions form
part of the system call API and can be invoked by any ap-
plication program.

Internally, TOSThreads components use thread sched-
uler commands that allow them to initialize(), start(),
stop(), suspend(), interrupt(), or wakeup() a specific
thread. The thread scheduler itself does not exist in any par-
ticular execution context (i.e., it is not a thread and does not
have its own stack). Instead, any TOSThreads component
that invokes one of these commands, executes in the context
of the calling thread; only the interrupt handler post-ambles
and the system call API wrappers invoke them directly.

The default TOSThreads scheduler implements a fully
preemptive round-robin scheduling policy with a time slice
of 5 msec. We chose this value to achieve low latency across

multiple application-level computing tasks. While applica-
tion threads currently run with the same priority, one can
modify the scheduler to support more sophisticated policies.

The thread scheduler is the first component to take control
of the processor during the boot process. Its job is to encap-
sulate TinyOS inside a thread and trigger the normal TinyOS
boot sequence. Once TinyOS boots and processes all of its
initial tasks, control returns to the thread scheduler which
begins scheduling application threads. The scheduler keeps
threads ready for processing on a ready queue, while threads
blocked on I/O requests or waiting on a lock are kept on dif-
ferent queues. Calling interrupt() or suspend() places
a thread onto one of these queues while calling wakeup()
removes it from a queue.

4.2 Threads
TOSThreads dynamically allocates Thread Control

Blocks (TCB) with space for a fixed size stack that does not
grow over time. While the memory costs associated with
maintaining per thread stacks can be substantial, we believe
the benefits of the programming model provided by preemp-
tive threading outweigh these costs in many situations. That
said, one can use techniques such as those proposed by Mc-
Cartney and Sridhar [27] to estimate (and thereby minimize)
the memory required by each of these stacks.

In order to aid our discussion of TOSThreads internals,
we provide the following code snippet which shows the com-
plete structure of a TOSThreads TCB. Below, we describe
each of the included fields in more detail:

struct thread {
thread_id_t thread_id;
init_block_t* init_block;
struct thread* next_thread;

uint8_t mutex_count; //
uint8_t state; // thread_state
thread_regs_t regs; //

void (*start_ptr)(void*); // start_function
void* start_arg_ptr;

uint8_t joinedOnMe[];
stack_ptr_t stack_ptr;
syscall_t* syscall;

};

thread id: This field stores a thread’s unique identifier. It
is used primarily by system call implementations and syn-
chronization primitives to identify the thread that should be
blocked or woken up.

init block: Applications use this field when dynamically
loaded onto a mote. As Section 4.4 describes, whenever
the system dynamically loads a TOSThreads application, the
threads it creates must receive all the state associated with
its global variables. An initialization block structure stores
these global variables and init block points to it.

next thread: TOSThreads uses a single queue mechanism
to keep track of blocked threads and to maintain the ready
queue. These queues are implemented as linked lists of thr-
eads connected through their next thread pointers. By de-
sign, a single pointer suffices: threads are always added to a

queue just before they are interrupted and are removed from
a queue before they wake up. This method saves memory.

thread state: This set of fields store information about
a thread’s current state. Specifically, it contains a count of
the number of mutexes the thread currently holds; a state
variable indicating the thread’s state (INACTIVE, READY,
SUSPENDED, or ACTIVE); and a set of variables that store
the processor’s register set when a context switch occurs.

start function: This set of fields point to a thread’s start
function along with a pointer to a single argument. The ap-
plication developer must ensure that the structure the argu-
ment points to is not deallocated before the thread’s start()
function executes. These semantics are similar to those de-
fined by the Unix pthreads library.

joinedOnMe: This field stores a bitmap of the thread ids for
all threads joined on the current thread through a join()
system call. This bitmap is traversed when the current thread
terminates and any threads waiting on it are woken up.

stack ptr: This field points to the top of a thread’s stack.
Whenever a context switch is about to occur, the thread
scheduler calls the switch threads() function, pushing the
return address onto the current thread’s stack. This function
stores the current thread’s register state, replaces the proces-
sor’s stack pointer with that of a new thread, and finally re-
stores the register state of the new thread. Once this function
returns, the new thread resumes its execution from the point
it was interrupted.

syscall: This field contains a pointer to the message passed
between an application thread and the TinyOS kernel when
making a system call. Access to this structure is shared be-
tween these two threads, with the application thread writing
the message into the structure and the kernel thread reading
it out. The following section explains how this structure is
used in more detail.

4.3 Blocking Syscall API
TOSThreads implements blocking system calls by wrap-

ping existing TinyOS services inside blocking APIs. These
wrappers are responsible for packing the parameters supplied
to a system call into a message and posting a task to the
TinyOS kernel. These wrappers also maintain state across
the non-blocking split-phase operations associated with an
underlying TinyOS service while it is processing a system
call. All wrappers are written in nesC with an additional
layer of C code layered on top of them. We refer to the TOS-
Threads standard C API as the API providing system calls to
standard TinyOS services such as sending packets, sampling
sensors, and writing to flash. Alternative APIs (potentially
also written in C) can be implemented as well (e.g., the Tenet
API discussed in Section 5.6). For more information on the
full API provided by TOSThreads, please refer to the TOS-
Threads section of the TinyOS documentation wiki [34].

A user thread initiates a system call by calling a function
provided by one of the blocking system call wrappers. Each
message passed by a wrapper function to the TinyOS kernel
contains a unique syscall_id associated with the system
call, a pointer to the thread invoking the call, a pointer to

Task!

Queue!

Routing!

Arbiter!

System Call!

Task! Receive!

Timer!

Send !

Receive !

Sense !

Block !

Storage !

Application Thread !
System Calls!

TinyOS Thread!

Figure 4. TOSThreads exposes kernel APIs through
blocking system calls wrapped around event-driven
TinyOS services. These wrappers (white boxes on the
left) run their respective system calls inside a single
shared TinyOS task. This task is interleaved with other
TinyOS tasks (grey boxes on the right) which TinyOS it-
self posts.

the function that TinyOS should call once it assumes control,
and the set of parameters this function should receive.

All variables associated with a system call message (i.e.,
the pointer to the SCB and the parameters passed to the sys-
tem call itself) are allocated on the local stack of the applica-
tion thread at the time of the system call. This is possible be-
cause once the calling thread invokes a system call, it will not
return from the function which instantiates these variables
until after the blocking system call completes. The message
remains on the application thread’s stack throughout the du-
ration of the system call and can therefore be accessed by the
kernel thread as necessary.

As discussed in Section 3, making a system call implicitly
posts a TinyOS task, causing the TinyOS thread to immedi-
ately wake up and the calling thread to block. Because we
constrain our design to allow the TinyOS thread to run when-
ever it has something to do, it is unnecessary to maintain a
queue of system calls waiting to be initiated; the downcall
of one system call will always complete before it is possi-
ble for another thread to initiate a system call. Thus, only
one TinyOS task is necessary to perform all application sys-
tem calls. The body of this task simply invokes the function
pointed to in the message passed by the calling thread. This
is in contrast to many other threads packages which must
maintain system call queues to track the system calls that
each thread makes. Figure 4 provides a visual representation
of the TOSThreads approach.

4.4 Dynamic Linker and Loader
Once we provide a clear separation between user and ker-

nel code and provide a system call API through which they
can interact, we enable the possibility of compiling applica-
tions separately and loading them dynamically at runtime.
TinyLD is the dynamic linker and loader we implemented
for TOSThreads. Using TinyLD, application programs writ-
ten in C can be dynamically installed and simultaneously ex-
ecuted on a mote. TinyLD’s task is to resolve, at run-time,
references to kernel API calls made by a dynamically load-

able application. To enable this, an application is first com-
piled offline into a customized loadable binary format called
MicroExe. This binary is then distributed to a mote via a dis-
semination protocol, or installed on a mote via its serial inter-
face. At that point, TinyLD accesses the binary from flash or
RAM, patches unresolved address references, and links it to
the kernel. Finally, TinyLD loads the resulting binary to the
mote’s ROM and spawns a thread to execute it. Currently, the
MicroExe format is only supported on MSP430-based plat-
forms, but we are in the process of modifying it to support
others as well. The paragraphs that follow elaborate on the
MicroExe format used by the linking and loading process.

4.4.1 MicroExe
Binary formats for dynamic linking and loading on gen-

eral purpose OSs are inefficient for memory-constrained
mote platforms [9]. Consider the Executable and Linkable
Format (ELF), the most widely used format for dynamic
linking and loading in Unix systems. While ELF encodes
addresses as 32-bit values, mote platforms based on the
MSP430 microcontroller, such as the Tmote Sky [29], have
a 16-bit address space. Moreover, symbol names in ELF are
encoded as text strings for ease of use, thus increasing the
size of the file.

MicroExe is a file format designed specifically for load-
able binaries in TinyOS. It uses 16-bit addresses, compacts
the representation of symbol names, and uses chained ref-
erences techniques ([23]) to reduce its size. Although it is
optimized for the MSP430 platform, its design principles are
equally applicable to other micro-controllers. A MicroExe
binary is created by first compiling an application written in
C to an ELF binary using a standard GCC compiler. Next, a
generator script running on a PC invokes the GCC toolchain
to extract ELF symbol and relocation tables to construct a
semantically equivalent, yet space-optimized, MicroExe file.
A detailed description of the MicroExe file format can be
found in the MicroExe technical report [30].

4.4.2 Linking and Loading
The linking and loading process consists of four steps.

First, TinyLD links the binary’s machine code to the ker-
nel by patching unresolved addresses corresponding to calls
for kernel services. It then allocates memory for all global
variables that the binary defines, patches references to local
variables, and loads the machine code into the mote’s ROM.
These steps are conceptually straightforward and all infor-
mation required for them is encoded in the MicroExe file.

Once all of the linking and loading steps are complete,
TinyLD invokes TOSThreads to spawn a new root thread
and begins running the application binary. A pointer to tos-
thread main, the starting point of the thread, as well as a
pointer to all global variables associated with the applica-
tion are passed as arguments to the new root thread, inside
the special init_block structure described in Section 4.2.
Once the newly spawned thread starts running, it calls tos-
thread main and waits for the entire program to finish be-
fore terminating. The init_block structure remains active
throughout the application’s lifetime and can be referenced
by any threads that tosthread_main or any of its children
ultimately spawn.

Operation Number of cycles

Start Static Thread 283
Start Dynamic Thread 679 + malloc()
Interrupt Thread 100
Suspend Thread 145
Wakeup Thread 15
Static Thread Cleanup 229
Dynamic Thread Cleanup 123
Restore Next Thread 85
Context Switch 184

Table 1. Number of cycles necessary to perform thread-
related operations.

Since children threads may need access to global vari-
ables associated with a loadable binary, TinyLD terminates
the binary only when all of its children have also terminated.
To ensure this, we designed a custom synchronization prim-
itive, we call a blocking reference counter. As described
above, every thread spawned by the root thread or one of its
children inherits a pointer to the original init_block. This
block contains a reference counter that increments when a
new thread is spawned and decrements whenever a thread
terminates. When the root thread itself finishes, it blocks
until this reference counter reaches zero. At that point, the
root thread de-allocates any resources associated with the
program and marks the flash ROM segments in which the
program was stored as free.
5 Evaluation

Our primary goals in designing TOSThreads were to ar-
chitect a system that was both thread-safe and non-invasive
with respect to the timing of critical OS services running in
the kernel. Additionally, we wanted a system that was back-
wards compatible with TinyOS, supported an evolvable ker-
nel, and enabled dynamic linking and loading of applications
at runtime. In this section, we evaluate how well TOSThre-
ads meets these requirements.

We first measure microbenchmarks based on the cycle
counts of TOSThreads basic scheduler operations. Second,
we analyze a representative sensor network application as
well as one that has a long-running compression computa-
tion, examining how TOSThreads can simplify programs and
quantifying its energy cost. Third, we evaluate dynamic link-
ing and loading and the MicroEXE file format using code
size as a metric, both in terms of bytes and lines of code. Fi-
nally, we evaluate TOSThreads’ expressiveness by present-
ing a reimplementation of the Tenet API using TOSThreads
as well as Latte, a novel JavaScript dialect.

All measurements use the Tmote Sky platform running
at 4MHz with a serial baud rate of 57,600 bps. We use the
onboard temperature, humidity, total solar, and photo active
radiation sensors for experiments including sensor readings.
5.1 Microbenchmarks

Tables 1 and 2 present the number of cycles necessary to
perform all relevant thread scheduler and basic synchroniza-
tion operations, respectively. With the Tmote Sky running
at 4 MHz, these operations (with the exception of starting a
dynamic thread) take less than a few hundred cycles to com-
plete. These numbers translate to less than 70 µsec of com-
putation time per operation. Even starting a dynamic thread

Operation Number of cycles

Mutex Init 13
Mutex Lock 17
Mutex Unlock 71

Barrier Reset 13
Barrier Block 41
Barrier Block with Wakeup 6 + 302×num waiting

Condvar Init 8
Condvar Wait 30
Condvar Signal Next 252
Condvar Signal All 314×num waiting

Refcount Init 12
Refcount Wait On Value 39
Refcount Increment 11
Refcount Decrement 11
Refcount Inc/Dec with Wakeup 11 + 320×num waiting

Join Block 74
Join Wakeup 74 + 326×num waiting

Table 2. Number of cycles necessary to perform the basic
TOSThreads synchronization primitives.

(which can take as many as 800 cycles, depending on the du-
ration of malloc()), takes less than 200 µsec. Thus, the cost
of performing these operations is negligible in terms of their
impact on the system’s responsiveness.

Tables 1 and 2 do not represent the true application-level
cost of using TOSThreads, as more than one of these op-
erations are usually performed in sequence. For example,
whenever a thread is suspended, either via a blocking sys-
tem call or because it waits on a synchronization primitive,
it must be explicitly woken up before it resumes. The total
cost of suspending the thread must then be calculated as the
sum of the suspend, context switch, and wakeup costs, for a
total of 344 cycles.

The total suspend cost is relevant when calculating the
total overhead of making a blocking system call. The first
column of Table 3 shows the marginal overhead of making a
blocking system call, while the second column presents the
total overhead including the cost of suspending and resuming
a thread (i.e., adding 344 cycles). In turn, these totals are rel-
evant when measuring the energy cost of using TOSThreads,
which we present next.

5.2 Energy Analysis
To measure the impact of TOSThreads on energy con-

sumption, we implement a representative sensor network ap-
plication and calculate the energy overhead of performing
all system calls, context switches, and thread synchroniza-
tion operations. Specifically, we develop a ‘Sense, Store,
and Forward’ (SSF) application consisting of producer thr-
eads which sample sensors once every logging period and
log their values to flash memory. The application also in-
cludes a consumer thread which reads the values written to
flash and transmits them over the radio, using a different
sending period. Our SSF application has six threads: one
for sampling each of the four sensors onboard the Tmote
Sky, one for logging these sensor values to flash, and one
for sending them over the radio. We set the logging period
to 5 minutes and the sending period to 12 hours, resulting

Operation Number of cycles Operation Number of cycles

Marginal Total Marginal Total

Sleep 371 715 Log Sync 466 810
Log Seek 476 820

StdControl Start 466 810 Log Read 491 835
StdControl Stop 466 810 Log Append 500 844

Log Erase 468 812
AM Send 390 734 Block Sync 468 812
AM Receive 912 1256 Block Read 495 839

Block Write 495 839
Sensirion
Sensor Read 277 621 Block Erase 466 810
ADC Read 477 821 Block CRC 506 850

Table 3. Overhead of invoking the system calls that the
standard TOSThreads C API provides. The marginal
column includes the cost of the system call itself while the
total column includes the cost of invoking the underlying
thread scheduler operations.

in 144 samples gathered during each sending period. The
six threads synchronize using a combination of mutexes and
barriers.

To calculate the energy overhead of executing this appli-
cation, we combine the system call costs found in the second
column of Table 3 and the synchronization costs calculated
in Table 2. Specifically, for each logging period we include
the cost of two Sensirion Sensor Reads, two ADC Reads,
four Mutex Locks (plus 344 cycles for suspends), four Mu-
tex Unlocks, eight Barrier Blocks, one Log Write, and one
Sleep call for a total of 6,286 cycles (log cost). The overhead
during each sending period is the sum of 144 Log Reads,
144 AM Sends, 144 Mutex Locks (plus suspends), 144 Mu-
tex Unlocks, and one Sleep operation, for a total of 288,859
cycles (send cost).

As measured in [21], the current the MSP430 processor
draws while active is 1.92 mA. Using this value, the total
energy consumed during each log and send period is:

Elog cost = (log cost×1.92mA)/4MHz
= 2.87µAs

Esend cost = (send cost×1.92mA)/4MHz
= 132.23µAs

Using an analysis similar to the one in [21], we calcu-
late the total lifetime of this application with different log-
ging periods2. In all cases we adjust the sending period to
be 144 times the logging period (derived from a typical 12
hour sending period and 5 minutes sampling interval). Fig-
ure 5 presents the percentage of energy consumed by system
calls and thread synchronization primitives as a function of
the logging period. In all cases this cost is less than 1%.
5.3 Supporting Long-running Computations

We evaluate the ability of TOSThreads applications to
perform long-running computations without interfering with
the responsiveness of the underlying TinyOS kernel. To do
so, we compare two versions of an application that uses com-
pression: one implemented using standard TinyOS tasks and

2This analysis assumes that the mote is powered by two AA bat-
teries with an approximate capacity of 2,700 mAh (9.72 ·109µAs).

 0.1

 1

 10

 100

 0 1 2 3 4 5
 0

 10

 20

 30

P
e

rc
e

n
ta

g
e

Y
e

a
rs

Logging Period [min]

Node Lifetime [years]

Energy Overhead [%]

Figure 5. Energy overhead of implementing SSF appli-
cation using TOSThreads as a function of the logging pe-
riod. Also shown is the node lifetime, using standard AA
batteries as the energy source.

Number of Number of
Program symbols patched addresses

Null 0 0
Blink 11 15
RadioStress 37 43
SenseSF 50 93
BaseStation 47 70

Table 4. The number of symbols and the number of ad-
dresses that TinyLD patches for five sample applications.

another using TOSThreads. In both cases, the application re-
ceives packets over the serial port every 50 msec and buffers
their payloads in RAM (25 bytes per packet). Whenever the
buffer is full, the application compresses the entire content of
the buffer (1,250 bytes) with the Lempel-Ziv-Welch (LZW)
compression algorithm. Experimental results show that com-
pressing the buffer requires approximately 1.4 sec, which is
more than sufficient to represent a long-running computa-
tion; any operation that lasts longer than 50 msec results in
an unresponsive system that will start dropping packets.

The metric we use for this experiment is the total number
of packets dropped after 500 serial packets have been sent.
Since TinyOS does not support task preemption, we expect
that the TinyOS version of the program will drop multiple
packets while compressing its buffer. The experiment con-
firmed our expectation: TinyOS dropped 127 packets while
TOSThreads dropped zero.

Although this application does not necessarily reflect the
actual long-running computations we expect motes to per-
form, the results we provide expose a fundamental limitation
in the existing TinyOS concurrency model – running long
computations severely affects its performance. TOSThreads
removes this limitation.
5.4 Dynamic Linking and Loading

TinyLD introduces space overhead in terms of applica-
tion and system code size, as well as execution overhead
in terms of the time necessary to link and load an applica-
tion binary. In this section, we evaluate these overheads by
measuring the cost of dynamically loading five sample appli-
cations compiled into the MicroExe format: Null, Blink,
Radio Stress, SSF, and BaseStation. The first appli-

Null Blink Radio
Stress

Sense
SF

Base
Station

B
y
te

s

0

200

400

600

800

1000

1200
code

symbols+header

Null Blink Radio
Stress

Sense
SF

Base
Station

T
im

e
 [
m

s
]

0

20

40

60

80

100

Figure 6. TinyLD overhead for five sample applications.
The top graph shows the size of each application using
the MicroExe format and the bottom graph presents the
time TinyLD requires to link and load each application.

cation is effectively empty and serves as a baseline for the
fixed cost of linking and loading. Blink is the standard
TinyOS application that repeatedly blinks a mote’s LEDs,
while RadioStress transmits radio packets as fast as possi-
ble. Finally, SSF is the application described in Section 5.2,
and BaseStation is the standard TinyOS application that
forwards radio packets to the serial port (and vice-versa).

The size of a MicroExe binary depends on four factors:
the size of the machine code (Code), the total number of re-
locations (UReloc), the total number of allocations (UAlloc),
and the total number of initialized global variables (UInit).
Since MicroExe stores patched addresses as chained refer-
ences, UReloc is equal to the number of unique symbols in the
program (please refer to [30] for more details). The size of a
MicroExe file is then given by:

Code+(UReloc +UAlloc) ·4+UInit ·6+5 ·2
The graph at the top of Figure 6 shows the breakdown of the
MicroExe binary into its code and header components for
each of the five sample applications.

The time required to link and load a MicroExe binary de-
pends on multiple factors. First, TinyLD must copy the entire
machine code section of a binary to the MCU’s flash ROM.
Experiments show that copying two bytes of data from mem-
ory to flash ROM takes 188 cycles (47 µsec on the Tmote
Sky). Second, the loading time depends on both the num-
ber of unique symbols in the binary and the number of ad-
dresses that TinyLD must patch. This is because TinyLD
implements an iterative loading process whereby the num-
ber of unique symbols determines the time required to find
the next smallest patched address, and the number of patched
addresses determines the total number of iterations required.

Table 4 presents the total number of symbols and ad-
dresses that require patching in each of the five sample ap-

Null Blink Radio
Stress

Sense
SF

Base
Station

B
y
te

s

0

200

400

600

800

1000

1200

1400

4
104

350

974
1022

2
110

298

672 708

TinyOS

TOSThreads using C API

Figure 7. Comparison of application code sizes for
five sample applications implemented using standard
TinyOS and TOSThreads.

Null Blink Radio
Stress

Sense
SF

Base
Station

L
in

e
s
 o

f
C

o
d
e

0

50

100

150

200

250

300

350

400

450

32
48

114

356

229

2
32

69

130 122

TinyOS

TOSThreads using C API

Figure 8. Comparison of application lines of code for
five sample applications implemented using standard
TinyOS and TOSThreads.

plications. The graph at the bottom of Figure 6 presents the
linking and loading time for these applications. One obser-
vation is that although SSF is smaller than BaseStation in
terms of binary size, it takes longer to load because it has
more symbols and patched addresses (see also Table 4).

5.5 Code Size
We also compare the code size of just the application por-

tion of our sample applications when implemented in both
standard TinyOS and TOSThreads. As Figures 7 and 8 indi-
cate, the TOSThreads versions are more compact in terms of
both binary code size and lines of code. We gathered binary
code sizes by manually counting the application-specific por-
tion of the binary resulting from an msp430-objdump. We
counted lines of code using a version of SLOCCount [38],
modified to recognize nesC.

Finally, we present a breakdown of the binary code size
and RAM usage of a complete TOSThreads kernel compiled
together with TinyLD (Figure 9). This kernel implements the
standard C API (i.e, one providing standard services such as
sending packets, sampling sensors, and writing to flash).

5.6 Tenet
We have re-implemented the Tenet API using TOSThre-

ads. Tenet applications specify tasks as linear dataflow pro-
grams consisting of a sequence of tasklets3. Each tasklet
is implemented as a core TinyOS component, providing a
specific TinyOS service. For example, an application that

3Even though Tenet runs on top of TinyOS, Tenet tasks are log-
ically distinct from TinyOS tasks.

ROM RAM

K
ilo

b
y
te

s

0

10

20

30

40
API Wrappers

Thread Library

TinyLD

TinyOS Core

ROM RAM
0

0.5

1

1.5

2

Figure 9. Breakdown of the binary code size and RAM
usage of a complete TOSThreads kernel based on the
standard C API compiled together with TinyLD.

Tenet tasks

Tasklets

Task Installer

Tenet

Scheduler

Figure 10. Original Tenet: Tenet scheduler executes
Tenet tasks by scheduling the execution of each tasklet
included in those Tenet tasks.

wants to be notified when the temperature at any mote ex-
ceeds 50◦F would write the following task:

Repeat(1000ms) -> Sample(ADC1,T)
-> LEQ(A,T,50) -> DeleteDataIf(A) -> Send()

Tenet consists of a task library, a task installer, and a task
scheduler. The task library contains a collection of tasklets,
the task installer dynamically executes tasks it receives from
the network, and the task scheduler coordinates the execu-
tion of all running tasks. This scheduler maintains a queue
of pending tasks and services them in round-robin order
(see Figure 10). Each tasklet runs to completion before the
next one is scheduled. Furthermore, Tenet includes a task
dissemination protocol, transport and routing protocols, a
time-synchronization protocol [25], and several other cus-
tom TinyOS components for accessing sensors and timers.

Tenet-T is a reimplementation of Tenet that uses the TOS-
Threads library. Specifically, Tenet-T spawns one thread to
service each Tenet task and replaces Tenet’s original task
scheduler with the TOSThreads thread scheduler. However,
Tenet-T maintains the same set of tasklet APIs defined in the
original Tenet and also uses the same task installer as in the
original Tenet. The rest of the original Tenet code runs un-
modified but now becomes part of the kernel, running inside
the TinyOS thread. Figure 11 provides a pictorial overview
of these modifications.

The main difference between Tenet-T and Tenet is that
TOSThreads supports preemption. This allows each thread
running a Tenet task to execute its tasklets one after another
without regard for how long each of them might take. In
the original Tenet, the Tenet task scheduler has to interleave
tasklets from multiple tasks in order to keep them all respon-
sive; individual tasklets run to completion and cannot per-

Thread

Scheduler

Tenet task

threads

Task Installer

Figure 11. Tenet-T: Each Tenet task is a TOSThreads
user thread and the thread scheduler schedules the exe-
cution of each task.

 tosthread_main()

 {

 …
 …

 …

 }

Dynamic

Loader

 tosthread_main()

 {

 …

 …
 …

 …

 }

 tosthread_main()

 {

 …
 …

 }

Compiled

binary

Thread

Scheduler

Figure 12. Tenet-C: Each Tenet task is a native mote bi-
nary, compiled from C code, that runs as a user thread.
Binaries are loaded by TinyLD and scheduled by the
TOSThreads scheduler.

form long running computations. Tenet-T removes this lim-
itation at the expense of a small increase in code size (see
Figure 13).

Tenet-C is a reimplementation of Tenet that significantly
increases the expressivity of the tasking language, yet does
not require drastic modifications to the overall system. In
Tenet-C, the user writes a C program, instead of a data-flow
task description, and compiles it into a dynamically loadable
binary object. For example, the Tenet temperature sensing
task example shown before, can be re-written as:

void tosthread_main(void* arg) {
uint16_t T;
for(;;) {

tosthread_sleep(1000ms);
T = Sample(ADC1);
if (T <= 50)

continue;
Send(&T, sizeof(T));

}
}

More complex applications can also be written quite easily
in Tenet-C.

The Tenet-C kernel is identical to that of Tenet-T except
that it uses TinyLD to dynamically link and load applica-
tion binaries (Figure 12). However, Tenet-C’s API is sig-
nificantly smaller. In Tenet-C, we only need to implement
tasklets such as Sample, Get, and Send in the form of block-
ing system calls into the Tenet kernel. Many of the other
Tenet tasklets provide functionality (e.g., arithmetic opera-
tions, comparisons) which is already provided natively by C.
In fact, the C language constructs for some of these func-
tions are strict supersets of those Tenet’s tasking language
provides. For example, the original Tenet had no support for
branching, and limited support for looping. An additional

Tenet Tenet−T Tenet−C

K
ilo

b
y
te

s

0

10

20

30

40

50

60

ROM

Tenet−Kernel

Tenet−API

Tenet Tenet−T Tenet−C

K
ilo

b
y
te

s

0

1

2

3

4

5

6

7

RAM

Tenet−Kernel

Tenet−API

Figure 13. Tenet mote code size (ROM/RAM). Tenet-C
is a reimplementation of Tenet which dynamically loads
and executes compiled binary tasks as user threads.

benefit of Tenet-C is that the binary code size is smaller than
that of the original Tenet, as Figure 13 suggests.

All three implementations (Tenet, Tenet-T, Tenet-C) have
been tested on a 35-node testbed using five simple Tenet
applications: blink, pingtree (gathers topology informa-
tion and draws routing tree), system (gathers mote’s in-
ternal system information), collect (periodically collects
sensor data), and deliverytest (tests end-to-end reliable
packet delivery). All application binaries were disseminated
to motes in the network using Tenet’s internal task dissemi-
nation protocol. These implementations can all run multiple
applications concurrently and their kernels contain compara-
ble functionality.

Finally, we report on an experiment that illustrates the
benefits of preemptive threading for task execution in Tenet-
C. In this experiment, we ran two Tenet tasks concurrently:

TaskLong : Repeat(100ms) -> ReadBlock(A,1024)
-> Avg(B,A) -> MeanDev(C,A) -> Send()

TaskSample: Repeat(50ms) -> TimeStamp(A)
-> Sample(ADC5,V) -> Send()

TaskLong periodically repeats a long running computation
(taking the mean deviation of 1024 samples) that takes
longer than 10ms, while the TaskSample task samples a sen-
sor every 50ms.

Figure 14 plots the distribution of the measured inter-
sample intervals for TaskSample, for both Tenet and Tenet-
C, both when that task runs by itself and when it runs concur-
rently with TaskLong. The expected inter-sample interval in
TaskSample is 50ms. In the original Tenet, which contains a
cooperative scheduler, the long-running computation cannot
be preempted. This induces significant sample timing jit-
ter for TaskSample; sometimes two consecutive samples are
missed! However, the jitter in Tenet-C is much less, with a
small number of samples experiencing a jitter of up to 8 ms.
Some of the jitter is introduced by thread scheduling over-
head, since TaskSample experiences a 1ms jitter for about a
fifth of the samples even when run alone. This experiment
validates the design of preemptive schedule in TOSThreads,
and illustrates how it can correctly support timing-sensitive
applications in the presence of long-running computations.

5.7 Additional Uses of TOSThreads
TOSThreads can be used to simplify the implementation

of high-level programming languages for motes. Latte [31]

Tenet−C

Tenet−C

Tenet

Tenet

concurrent

single

concurrent

single

tasks

task

tasks

task

40 50 60 70 80 90 100 110 120 130

Inter−sample interval (ms)

0%

100%

0%

100%

0%

100%

0%

100%

Figure 14. Distribution of measured inter-sample inter-
val of a simple periodic sampling task, for Tenet and
Tenet-C, when running by itself or running concurrently
with another task which has long-running computation.
Intended inter-sample interval is 50 milliseconds.

is a Javascript variant designed to simplify the writing of effi-
cient sensor network applications. Latte programs can either
be interpreted within a JavaScript-enabled web browser or
compiled directly down to C. Running programs in a browser
simplifies the early stages of application development and
helps to reduce debugging cycles.

In our TOSThreads-based implementation of Latte, pro-
grams compiled into C make system calls that are either
statically-linked against a TinyOS kernel or dynamically
loaded onto a running mote using TinyLD. In the absence
of the blocking API that TOSThreads provides, a Latte im-
plementation on TinyOS would have had to expose an event-
driven programming interface, increasing the compiler com-
plexity and reducing ease-of-use. Indeed, the original imple-
mentation of Latte on TinyOS had an event-driven interface
for exactly this reason.

TOSThreads has also been successfully used to ease the
implementation of a polling-based SD card and GPS driver
for the MAMMARK [11] project at UCSC, as well as for up-
coming versions of the SPINE body sensor network project
from Telecom Italia [19].

6 Related Work
We review prior threading proposals for TinyOS and other

sensor network operating systems, as well as prior work on
dynamic linking and loading techniques used on mote class
devices. TOSThreads builds on this prior work, enabling
preemptive threads through message passing on top of an
event-based kernel.

Many thread-based sensor network operating systems rely
on kernel traps to achieve synchronization at the cost of lim-
ited concurrency. For example, TinyMOS [35] runs TinyOS
inside a dedicated thread just as TOSThreads does. How-
ever, it requires TinyOS code to be instrumented with syn-

chronization primitives around all core OS abstractions, as
the TinyOS concurrency model does not understand preemp-
tion outside of interrupts. TOSThreads, on the other hand, is
able to avoid these problems through its use of message pass-
ing. This seemingly small change to the model allows arbi-
trary concurrency in the kernel, and requires only minimal
changes to the existing TinyOS code base (in the interrupt
handler post-ambles and the boot sequence).

Cooperative threading is another popular approach used
by many threads packages such as TinyThreads [27]. How-
ever, as discussed in Section 2, cooperative threading re-
quires each thread to voluntarily yield the processor, plac-
ing the burden of when to do so on the application program-
mer. In the case of TinyThreads, a single long-running thread
could disrupt the TinyOS task queue and therefore affect
the timing of critical kernel services. In contrast, TOSThre-
ads requires no explicit yields, simplifying programming and
preventing errors: users can run multiple infinite loops.

Unlike Protothreads, which do not maintain thread con-
text across blocking calls [10], TOSThreads is a full threads
implementation. Therefore, users do not have to manually
maintain continuations in the form of global variables, sim-
plifying program design. On the other hand, this also means
that TOSThreads requires more memory than Protothreads,
to maintain stacks.

Numerous other concurrency proposals for TinyOS exist,
including fibers [36], virtual machine threads [24], and pre-
emptive tasks [7]. While TOSThreads borrows some of its
ideas from many of these approaches, none of these exist-
ing techniques allow users to write simple, thread-based pro-
grams on a TinyOS kernel; they either limit the number of
threads available on the system (fibers), are built into a spe-
cialized runtimes (fibers, VM threads), or break the TinyOS
concurrency model (preemptive tasks).

In addition to fully event-driven and Protothread pro-
gramming models, Contiki provides an optional cooperative
threading library to applications. Although initial work in-
troduced preemptiveness [10], synchronization mechanisms
for making the Contiki kernel thread-safe were never added
to the Contiki code.

RETOS [4] is a sensor network operating system designed
from the ground up to support the POSIX-like threading
API. While RETOS’s implementation of the POSIX stan-
dard is not 100% compatible with standard POSIX, it pro-
vides enough functionality to ease a programmer’s learning
curve. Like TOSThreads, RETOS also separates the kernel
from the user applications using a set of system calls. How-
ever, in contrast to TOSThreads, RETOS does not have sup-
port for events and relies completely on blocking calls.

Nano-RK is a real-time operating system designed for
wireless sensors networks [12]. The OS is based on the no-
tion of reservations and it implements preemptive multitask-
ing with fixed priorities capable of guaranteeing that task
deadlines are met. Nano-RK uses message passing to im-
plement signals, but its support for events (i.e., timers and
external interrupts) is limited.

LiteOS [3], which provides a UNIX-like shell interface, is
also based on a message-passing architecture. LiteOS appli-
cation threads trigger a kernel thread to run and handle sys-

tem calls. However, unlike TOSThreads, many of the system
calls in LiteOS block on spin loops, constraining its overall
concurrency.

Other embedded OSs such as uC/OS [28] and FreeR-
TOS [1], also use message passing, but differ from TOSThr-
eads in one important respect. TOSThreads uses message
passing as the interface for making system calls between ap-
plication threads and the kernel, while these other systems
use them for communication between threads at the applica-
tion level.

Message passing systems like this are not new: they are a
30-year old abstraction [22] and a staple of microkernel de-
signs such as Mach [32]. Traditional microkernels typically
have kernel threads independent of user threads, which re-
spond to application requests. Separating kernel and user
concurrency in this way enables the kernel to control re-
entrancy without explicit synchronization: instead, synchro-
nization occurs around the message queues between user and
kernel threads. While this approach has architectural ele-
gance, experience has shown it to be prohibitively expen-
sive: early implementations (e.g., MkLinux) exhibit up to a
60-fold slowdown on some system calls and even state-of-
the art microkernels such as L4Linux exhibit slowdowns of
20-150% [16]. Virtual memory is a major cause of this slow-
down as well as the high cost of system calls in multithreaded
operating systems generally. TOSThreads’ contribution in
this area is to apply the use of message passing to TinyOS
in a way that allows fully preemptive threads while requiring
only minor changes to existing TinyOS code.

In terms of prior work on the dynamic linking and loading
techniques used in TOSThreads, there have been other pro-
posals for dynamically loading binaries on mote platforms.
FlexCup also allows dynamic loading of TinyOS compo-
nents [26]. However, FlexCup uses a linking and loading
method that requires rebooting the node for the new image
to run. Moreover, the application halts during the linking and
loading process. TinyLD does not have these limitations.

With Contiki, Dunkels et al. [8] introduced the Compact
ELF (CELF) binary format to quantify the overhead of dy-
namic loading and its relation to the standard ELF format.
Compact ELF (CELF) binaries, like MicroExe binaries, are
also compressed versions of ELF, though neither format is
backwards compatible with it. The only real difference be-
tween MicroExe and CELF is its use of chained references
which makes the binary image linear in the number of sym-
bols rather than the number of relocations.

7 Summary and Conclusions
TOSThreads is a fully functional thread library designed

for TinyOS. It provides a natural extension to the existing
TinyOS concurrency model, allowing long running compu-
tations to be interleaved with timing-sensitive operations.
TOSThreads’ support for efficiently running dynamically
loaded binaries, combined with its ability to support a flexi-
ble user/kernel boundary, enables experimentation with a va-
riety of high-level programming paradigms for sensor net-
work applications. We hope that this capability will acceler-
ate the movement towards a standard TinyOS kernel that can
support a wide range of applications.

Modern threading systems and kernels are optimized for
high-performance processors, with virtual memory, caches,
and large context switch latencies. In contrast, TOSThreads
is designed for a microcontroller, whose different properties
cause an approach discarded long ago – message passing –
to be both efficient and compelling. This suggests another
way in which different application workloads and hardware
considerations cause system design in ultra-low power sen-
sor networks to differ from that in mainstream platforms.

8 Acknowledgments
We would like to thank our shepherd, Adam Dunkels, and

the anonymous reviewers for their help improving our pa-
per. This material is based upon work partially supported
by the National Science Foundation under grants #0754782
(“IDBR”), #0121778 (CENS), #0520235 (Tenet), #0615308
and #0846014. This work was also supported by generous
gifts from DoCoMo Capital and Microsoft Research.

9 References
[1] R. Barry. FreeRTOS, a FREE open source RTOS for small embedded

real time systems. Available at http://www.freertos.org.

[2] S. Bhatti et al. MANTIS OS: An Embedded Multithreaded Oper-
ating System for Wireless Micro Sensor Platforms. ACM/Kluwer
MONET, Special Issue on Wireless Sensor Networks, 10(4):563–579,
Aug. 2005.

[3] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He. The LiteOS Oper-
ating System: Towards Unix-Like Abstractions for Wireless Sensor
Networks. In Proc. of IPSN’08, 2008.

[4] H. Cha, S. Choi, I. Jung, H. Kim, H. Shin, J. Yoo, and C. Yoon. RE-
TOS: resilient, expandable, and threaded operating system for wire-
less sensor networks. In Proc. of IPSN’07, 2007.

[5] K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey,
R. Govindan, E. Johnson, and S. Masri. Monitoring Civil Structures
with a Wireless Sensor Network. IEEE Internet Computing, 10(2),
March/April 2006.

[6] Crossbow Inc. Imote2: High-Performance Wireless Sensor Network
Node. Available at: http://www.xbow.com/Products/Product_
pdf_files/Wireless_pdf/Imote2_Datasheet.pdf, 2007.

[7] C. Duffy, U. Roedig, J. Herbert, and C. J. Sreenan. Adding Preemption
to TinyOS. In Proc. of EmNets, 2007.

[8] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt. Run-time dynamic
linking for reprogramming wireless sensor networks. In Proc. of Sen-
Sys’06, 2006.

[9] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and flex-
ible operating system for tiny networked sensors. In Proc. of Emnets-I,
2004.

[10] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali. Protothreads: Sim-
plifying event-driven programming of memory-constrained embedded
systems. In Proc. of SenSys’06, 2006.

[11] G. Elkaim, E. Decker, G. Oliver, and B. Wright. Marine mammal
marker (mammark) dead reckoning sensor for in-situ environmental
monitoring. In Proc. of the ION/IEEE PLANS, 2006.

[12] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK: An Energy-Aware
Resource-Centric RTOS for Sensor Networks. In Proc. of RTSS’05,
2005.

[13] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC Language: A Holistic Approach to Networked Embedded
Systems. In Proc. of PLDI, 2003.

[14] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira,
D. Estrin, R. Govindan, and E. Kohler. The TENET Architecture for
Tiered Sensor Networks. In Proc. of SenSys’06, 2006.

[15] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A Dy-
namic Operating System for Sensor Nodes. In Proc. of Mobisys’05,
2005.

[16] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and J. Wolter. The
performance of µ-kernel-based systems. In Proc. of SOSP, 1997.

[17] J. Hicks, J. Paek, S. Coe, R. Govindan, and D. Estrin. An Easily De-
ployable Wireless Imaging System. In Proc of ImageSense’08, 2008.

[18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for network sensors. In Proc. of ASP-
LOS’00, 2000.

[19] T. Italia. Spine: Signal processing in node environment. Available at
http://spine.tilab.com/.

[20] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health Monitoring of Civil Infrastructures Using Wireless
Sensor Networks. In Proc. of IPSN’07, 2007.

[21] K. Klues, V. Handziski, C. Lu, A. Wolisz, D. Culler, D. Gay, and
P. Levis. Integrating Concurrency Control and Energy Management
in Device Drivers. In Proc. of SOSP, 2007.

[22] H. C. Lauer and R. M. Needham. On the duality of operating system
structures. SIGOPS Oper. Syst. Rev., 13(2):3–19, 1979.

[23] J. R. Levine. Linkers and Loaders. Morgan Kaufmann Publishers,
2000.

[24] P. Levis, D. Gay, and D. Culler. Active sensor networks. In Proc. of
NSDI, 2005.

[25] M. Marot, B. Kusy, G. Simon, and A. Ledeczi. The flooding time
synchronization protocol. In Proc. of SenSys’04, 2004.

[26] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and
K. Rothermel. FlexCup: A Flexible and Efficient Code Update Mech-
anism for Sensor Networks. In Proc. of EWSN’06, 2006.

[27] W. P. McCartney and N. Sridhar. Abstractions for safe concurrent
programming in networked embedded systems. In Proc. of SenSys’06,
2006.

[28] Micrium. uc/os-ii, the real-time kernel. Available at http://www.
micrium.com/page/products/rtos/os-ii/.

[29] MoteIV Corporation. Tmote Sky. Available at: http://www.
moteiv.com/products/tmotesky.php.

[30] R. Musăloiu-E., C.-J. M. Liang, and A. Terzis. A Modular Ap-
proach for Developing and Updating Wireless Sensor Network Appli-
cations. Technical Report 21-10-2008-HiNRG, Johns Hopkins Uni-
versity, 2008.

[31] R. Musăloiu-E. and A. Terzis. The Latte Language. Technical Report
22-10-2008-HiNRG, Johns Hopkins University, 2008.

[32] R. Rashid, D. Julin, D. Orr, R. Sanzi, R. Baron, A. Forin, D. Golub,
and M. Jones. Mach: a system software kernel. In Proc. of COMP-
CON’89, 1989.

[33] C. Sadler and M. Martonosi. Data compression algorithms for energy-
constrained devices in delay tolerant networks. In Proc. of SenSys’06,
2006.

[34] The TinyOS Community. The tinyos documentation wiki. Available
at: http://docs.tinyos.net.

[35] E. Trumpler and R. Han. A Systematic Framework for Evolving
TinyOS. In Proc. of EmNetS-III, 2006.

[36] M. Welsh and G. Mainland. Programming Sensor Networks Using
Abstract Regions. In Proc. of NSDI, 2004.

[37] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fi-
delity and Yield in a Volcano Monitoring Sensor Network. In Proc. of
OSDI, 2006.

[38] D. Wheeler. The SLOCCount utility. Available at http://www.
dwheeler.com/sloccount/.

