
Poster Abstract: TinyOS 2.1
Adding Threads and Memory Protection to TinyOS

The TinyOS Alliance
(Including all members of the TinyOS 2.x related working groups)

http://www.tinyos.net/scoop/special/working_groups

ABSTRACT
The release of TinyOS 2.0 two years ago was motivated by
the need for greater platform flexibility, improved robustness
and reliability, and a move towards service oriented appli-
cation development. Since this time, we have seen the com-
munity embrace these efforts and add support for additional
hardware platforms (TinyNode, Iris, Shimmer, BtNode, In-
telMote2), and new application level services (CTP [4], Del-
uge 2.0 [3], FTSP [9], ICEM [5], printf, TYMO, DIP [8],
DRIP [7], ...). These enhancements are important in the
progression of TinyOS as a whole, and have resulted in sev-
eral minor releases (i.e. TinyOS 2.0.1, 2.0.2).

TinyOS 2.1 is the next stage in the evolution of TinyOS;
it takes a step towards addressing the need for easier and
more robust application development. TinyOS 2.1 intro-
duces a number of significant enhancements to core TinyOS
components and interfaces. The most notable features in-
clude a fully preemptable application-level threads library
known as TOSThreads, and a runtime memory protection
service called Safe TinyOS. The former aims to ease writing
event-driven code while preserving the time-sensitive aspect
of TinyOS. The latter aims to make applications more ro-
bust through memory safety checks.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.4.1
[Operating Systems]: Process Management—Threads; D.4.5
[Operating Systems]: Reliability

General Terms
Design, Reliability

Keywords
TinyOS, Memory Safety, Threading Models

Copyright is held by the author/owner(s).
SenSys’08, November 5–7, 2008, Raleigh, North Carolina, USA.
ACM 978-1-59593-990-6/08/11.

Task 

Scheduler 

Thread Scheduler

System Calls

TinyOS 

Thread

Application 

Threads

Figure 1: Overview of the basic TOSThreads archi-
tecture. The vertical line separates user-level code
on the left from kernel code on the right. Looping
arrows indicate running threads, and the blocks in
the middle of the figure indicate API slots for mak-
ing a system call.

1. TOSTHREADS
Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek, Răz-
van Musăloiu-E., Ramesh Govindan, Andreas Terzis, Philip
Levis

TOSThreads is a complete implementation of a fully pre-
emptive application level threads library for TinyOS. It pro-
vides a natural extension to the existing TinyOS concur-
rency model, requiring only minor changes to the TinyOS
code base (as documented in [6]). In the existing TinyOS
concurrency model two execution contexts exist: synchronous
(tasks) and asynchronous (interrupts). These two contexts
follow a strict priority scheme: asynchronous code can pre-
empt synchronous code but not vice-versa. TOSThreads
extends this concurrency model to provide a third execu-
tion context in the form of user-level application threads.
Threads synchronize using standard synchronization primi-
tives such as mutexes, semaphores, barriers, and condition
variables.

Figure 1 presents the basics of the TOSThreads archi-
tecture. Any number of application threads can run con-
currently (barring memory constraints), making calls into a
single higher priority TinyOS kernel thread through a cus-
tomizable blocking system call API. Each blocking system
call invokes a particular TinyOS service, managing any nec-
essary state across its underlying split-phase implementa-
tion. One key feature of TOSThreads is its ability to easily
extend this API to include additional TinyOS services. One
simply creates a thin shim layer of code (for which many
examples already exist) that sits on top of the desired ser-



vice. Applications can be written against this API in either
nesC or standard ANSI-C, enabling developers with no prior
knowledge of TinyOS to quickly start writing TinyOS based
applications.

Preliminary results show that performing context switches
and system calls in TOSThreads introduce a computation
overhead of less than 0.92% on representative sensing ap-
plications. Furthermore, TOSThreads has been successfully
used to reimplement existing sensor network systems such
as Tenet, as well as ease the development of language exten-
sions for sensor network, such as Latte, a JavaScript vari-
ant for motes. TOSThreads is also the basis of TinyLD,
a dynamic linker and loader for TinyOS. While not ready
for inclusion in TinyOS 2.1, TinyLD will soon be used to
dynamically deploy and execute TOSThreads based appli-
cations at runtime.

2. SAFE TINYOS
John Regehr, Eric Eide, Nathan Cooprider, Will Archer,
Yang Chen, David Gay

Forming an actionable hypothesis about why a sensor net-
work is malfunctioning is difficult because many different
root causes have the same effect: nodes drop out of the net-
work, reboot, and otherwise fail. One class of root causes—
pointer and array bugs, or memory safety violations—is par-
ticularly difficult because the typical consequence of a safety
bug is corrupted RAM.

TinyOS 2.1 applications can be optionally compiled in safe
mode where the Deputy compiler [1] is used to enforce mem-
ory safety at runtime. In safe code, the programmer must
provide a few extra annotations describing bounds of arrays
and branches of unions. The Deputy compiler then adds a
safety check before each potentially unsafe operation; failed
checks jump to a fault handler. The source code location
of the fault can be found by reading an error code from the
node’s LEDs and entering it into a tool. Safe TinyOS has
helped find previously unknown bugs as well as bugs that
were known to exist, but whose location was unknown.

Safe TinyOS permits safe code to be freely mixed with
unsafe code using new module-level nesC attributes @safe

and @unsafe, with unsafe being the default. The overheads
of safety are evaluated in [2].

3. OTHER ADDITIONS
TinyOS Working Groups

TinyOS 2.1 has numerous features and additions beyond
TOSThreads and memory safety. It adds two new platforms,
the IRIS from Crossbow, Inc., and SHIMMER, jointly de-
veloped by Harvard University and the Intel Corporation.
It supports the Flooding Time Synchronization Protocol
(FTSP) on most platforms [9]. The Collection Tree Pro-
tocol (CTP) has been updated to use the state-of-the-art
4-bit link estimator [4], resulting in a 35% improvement in
efficiency over MultihopLQI. It includes a second dissemina-
tion protocol, DIP, which has smaller RAM requiremnts and
can scalably manage hundreds of dissemination values [8].
The 802.15.4 frame format has changed to be able to sup-
port 6lowpan networking [10] in future releases, and there is
an optional 802.15.4-compliant MAC layer implementation.
Finally, TinyOS 2.1 includes numerous bug fixes, system im-
provements, and additional documentation.

4. ACKNOWLEDGEMENTS
TinyOS 2.1 was made possible through members of the

TinyOS related working working groups around the globe.
The institutions involved in its development in no particular
order include Vanderbilt University, Johns Hopkins Univer-
sity, Stanford University, UC Berkeley, UCLA, USC, TU
Berlin, Harvard University, University of Szeged, MIT, Uni-
versity of Copenhagen, ETH Zürich, EPFL, University of
Utah, Rincon Research Inc., Intel Research, Crossbow Inc.,
and Arch Rock Co.

We would like to thank everyone from the greater TinyOS
community for their valuable feedback on the mailing lists
during the development of TinyOS 2.1. Without such feed-
back, TinyOS would not be what it is today.

5. REFERENCES
[1] Jeremy Condit, Matthew Harren, Zachary Anderson,

David Gay, and George C. Necula. Dependent types
for low-level programming. In Proc. of the16th
European Symp. on Programming (ESOP), Braga,
Portugal, March–April 2007.

[2] Nathan Cooprider, William Archer, Eric Eide, David
Gay, and John Regehr. Efficient memory safety for
TinyOS. In Proc. of the 5th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2007),
pages 205–218, Sydney, Australia, November 2007.

[3] Deluge: TinyOS Network Programming. Available at
http://www.cs.berkeley.edu/~jwhui/research/

projects/deluge/.

[4] Rodrigo Fonseca, Omprakash Gnawali, Kyle Jamieson,
and Philip Levis. Four-Bit Wireless Link Estimation,
2008.

[5] Kevin Klues, Vlado Handziski, Chenyang Lu, Adam
Wolisz, David Culler, David Gay, and Phil Levis.
Integrating Concurrency Control and Energy
Management in Device Drivers. In Proceedings for The
21st ACM Symposium on Operating Systems
Principles (SOSP), 2007.

[6] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek,
Razvan Musaloiu-E., Ramesh Govindan, Andreas
Terzis, and Philip Levis. TEP134: The TOSThreads
Thread Library.

[7] Philip Levis, Neil Patel, David Culler, and Scott
Shenker. Trickle: A Self-regulating Algorithm for Code
Propagation and Maintenance in Wireless Sensor
Networks. In Proceedings of NSDI 2004, March 2004.

[8] Kaisen Lin and Philip Levis. Data Discovery and
Dissemination with DIP. In IPSN ’08: Proceedings of
the 2008 International Conference on Information
Processing in Sensor Networks (ipsn 2008), pages
433–444, Washington, DC, USA, 2008. IEEE
Computer Society.

[9] M. Marot, B. Kusy, Gy. Simon, and A. Ledeczi. The
flooding time synchronization protocol. In Proceedings
of the 2nd international conference on Embedded
networked sensor systems (SenSys), pages 39–49,
November 2004.

[10] Gabriel Montenegro, Nandakishore Kushalnagar,
Jonathan Hui, and David Culler. RFC4944:
Transmission of IPv6 Packets over IEEE 802.15.4
Networks, September 2007.


