
TinyOS 2.1: Adding Threads and Memory Protection to TinyOS!
The TinyOS Alliance
(Including all members of the TinyOS 2.x Working Groups)
http://www.tinyos.net

TinyOS
Scheduler

Thread Scheduler

System Calls

TinyOS
Thread

Application
Threads

Task!
Queue!

Routing!

Arbiter!

System Call!
Task! Receive!

Timer!

Send !

Receive !

Sense !

Block !
Storage !

User Thread !
System Calls!

TinyOS Thread!

TOSThreads! Safe TinyOS!

Acknowledgments!

Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek,!
Răzvan Musăloiu-E., Ramesh Govindan, Andreas Terzis, Philip Levis!

John Regehr, Eric Eide, Nathan Cooprider, Will Archer, Yang Chen,
David Gay!

The institutions involved (in no particular order) include Vanderbilt University, Johns Hopkins University, Stanford
University, UC Berkeley, UCLA, USC, TU Berlin, Harvard University, University of Szeged, MIT, University of Copenhagen,
ETH Zürich, EPFL, University of Utah, Rincon Research Inc., Intel Research, Crossbow Inc., and Arch Rock Co.!
We thank the greater TinyOS community for their valuable feedback.!

TinyOS 2.1 is the next stage in the evolution of TinyOS. It takes a step towards easier and more robust application development. The
most notable features include:!

•  TOSThreads: A fully preemptive application-level threads library that preserves the time-sensitive aspects of TinyOS.!
•  Safe TinyOS: A runtime memory protection service with memory safety checks.!
•  Other additions: 4-bit link estimator, FTSP, IRIS and SHIMMER support, DIP, and optional 802.15.4-compliant MAC layer.!

Other Additions!

•  Two new platforms: IRIS (Crossbow Inc.),
and SHIMMER (Harvard University and
Intel Corporation).!

•  Flooding Time Synchronization
Protocol (FTSP): Miklós Maróti, Branislav
Kusy, Gyula Simon and Ákos Lédeczi.!•  Collection Tree Protocol (CTP) with

the new 4-Bit link estimator: Rodrigo
Fonseca, Omprakash Gnawali, Kyle
Jamieson and Philip Levis.!

•  A dissemination protocolthat scales to
hundreds of values, called DIP: Kaisen Lin
and Philip Levis.!
•  Optional 802.15.4-compliant MAC layer:
Gabriel Montenegro, Nandakishore
Kushalnagar, Jonathan Hui and David Culler.!

TOSThreads allows fully preemptive application threads to run
concurrently, making blocking calls to a single higher priority
TinyOS kernel thread. Message-passing threading model does
not sacrifice the underlying TinyOS event-driven model.!

Leveraging the user/kernel
boundary, the TinyLD
component dynamically links
applications in the MicroExe
format to a static kernel.!

TOSThreads has been used in various projects:!
①  Latte, Johns Hopkins University.!
②  Tenet, University of Southern California.!
③  MAMMARK, University of California, Santa Cruz.!
④  SPINE, Telecom Italia.!

•  nesC is not type or memory safe!
•  Motes lack hardware-based memory protection!
So…!
•  Pointer and array errors lead to memory corruption!
•  Symptoms: Motes act flaky, drop out of the network, etc.!

Array
Out-of-bounds

Null Pointer Dereference

Goals:!

•  Trap all pointer and array errors!

•  Provide useful diagnostics!

•  Provide recovery strategies!

module AdcStreamP { … }
implementation {
 …
 norace uint16_t count;
 norace uint16_t * buffer;
 norace uint16_t * pos;
 …
} /* Before TinyOS 2.1 */

Array
Out-of-bounds

Normal
TinyOS

Array
Out-of-bounds

Safety Errors
Reported by FLIDs

Safe
TinyOS

Reboot
Node

make telosb safe

module AdcStreamP @safe() { … }
implementation {
 …
 norace uint16_t count;
 norace uint16_t * COUNT_NOK(count) buffer;
 norace uint16_t * BND_NOK(buffer, buffer+count) pos;
 …
} /* TinyOS 2.1 */

 Annotate Safe
TinyOS
code

TinyOS
code

run modified
nesC compiler

enforce safety
using Deputy

compress
error messages

Safe
TinyOS

App

Modify TinyOS to work
with Deputy

Enforce Deputy’s safety
model

Reduce overhead

Exploit Deputy:!
Deputy is a source-to-source compiler
for ensuring type and memory safety
for C code. Code compiled by Deputy
relies on a mix of compile- and run-
time checks to ensure that these
annotations are respected, and hence
that type and memory safety are
respected.!

Our effort shows that Safe TinyOS is a practical system for the development of
reliable sensor network software. Platforms currently supported: Mica2, Micaz and
TelosB. Visit our webpage for more information: !

http://www.cs.utah.edu/~coop/safetinyos

TOSThreads context switches
and system calls introduce an
overhead of less than 0.92%.
TinyLD requires less than 90ms
on a representative sensing
application.!

Given motesʼ resource constraints, an event-based OS permits
greater concurrency. However, preemptive threads offer an
intuitive programming paradigm.!

