
Integrating Concurrency Control and
Energy Management in Device Drivers

Kevin Klues†∓?, Vlado Handziski?, Chenyang Lu∓, Adam Wolisz?�,
David Culler•�, David Gay‡, and Philip Levis†

† Stanford University ∓ Washington University ? Technische Universität Berlin
Stanford, CA St. Louis, MO Berlin, Germany

� University of California, Berkeley • Arch Rock Corporation ‡ Intel Research, Berkeley
Berkeley, CA San Francisco, CA Berkeley, CA

{klueska, pal}@cs.stanford.edu {handzisk, wolisz}@tkn.tu-berlin.de
lu@cs.wustl.edu culler@cs.berkeley.edu dgay@intel-research.net

Abstract
Energy management is a critical concern in wireless sensornets. De-
spite its importance, sensor network operating systems today pro-
vide minimal energy management support, requiring applications to
explicitly manage system power states. To address this problem,
we present ICEM, a device driver architecture that enables simple,
energy efficient wireless sensornet applications. The key insight
behind ICEM is that the most valuable information an application
can give the OS for energy management is its concurrency. Us-
ing ICEM, a low-rate sensing application requires only a single line
of energy management code and has an efficiency within 1.6% of
a hand-tuned implementation. ICEM’s effectiveness questions the
assumption that sensornet applications must be responsible for all
power management and sensornets cannot have a standardized OS
with a simple API.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; D.2.11
[Software Engineering]: Software Architectures

General Terms
Design, Management

Keywords
Concurrency, Energy, Device Driver Architecture, TinyOS

1. INTRODUCTION
Energy efficiency is a critical concern in mobile and battery pow-

ered systems. Reducing energy consumption improves system life-
time. An OS can improve energy efficiency by putting peripherals
into low power modes and dropping the processor to a sleep state

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

when idle. The challenge lies is deciding when and how to do so: to
manage energy well, an OS must infer future application behavior.

Prior work has shown us two things are generally true when an OS
optimizes for energy: simple models are rarely effective and a bit of
application knowledge can go a long way. For dynamic CPU volt-
age scaling, Vertigo [6] showed that having a process tell the OS its
workload class greatly outperforms simple hardware heuristics and
fixed-interval averaging [11], and GRACE-OS demonstrated that re-
ceiving explicit real-time deadlines from applications allows an OS
to reduce energy further [41]. For disk spindown, Coop-I/O explored
how application-specified timeouts on disk operations allow the OS
to batch requests, outperforming even an oracle spindown policy for
standard file interfaces [39].

Despite all of these advances, most modern operating systems still
use very simplistic energy management policies. The problem is
that, beneath all of their advanced libraries, applications still use
APIs which were designed before energy constraints were a ma-
jor concern. At first glance, wireless sensor networks (sensornets)
seem to be a domain of computer systems that would avoid these pit-
falls. Intended to last for months or years on small batteries, sensor-
nets have harsh energy requirements, making energy management a
critical component of almost every application. As sensornets have
limited resources and very different use cases than traditional time-
sharing systems, they tend to run small, customizable operating sys-
tems with flexible abstraction boundaries.

In practice today, however, sensornet operating systems, like their
embedded siblings, provide minimal energy management support.
They leave all complexity to the application. Embedded OSes such
as eCos [29] and VxWorks [40], for example, have interfaces for
processor power control but peripheral device control is left to the
application. Sensornet OSes such as TinyOS [16], Contiki [5],
MOS [1], and SOS [12] have power control interfaces which an
application must explicitly invoke in order to change power states.
Pushing all this logic into the application means that the OS does
not prevent energy saving strategies, but this flexibility comes at the
cost of application code complexity. For example, the core code for
the TinyOS Great Duck Island deployment [33] – the first success-
ful long-term deployment of the OS – is 500 lines filled with special
cases such as “if forwarding a packet, defer powering down.” In con-
trast, if this application were to be implemented using the features
provided by ICEM, it would be fewer than 50 lines.

In this paper, we present ICEM (Integrated Concurrency and En-
ergy Management), a sensornet device driver architecture that allows

1

a sensornet OS to automatically minimize energy consumption with-
out requiring additional explicit information from an application.
The key insight behind ICEM is that the most important informa-
tion a sensornet application can provide is the potential concurrency
of its I/O. As most sensornet OSes are completely event-driven, an
application simply needs to make a set of asynchronous system calls
and let the OS schedule the underlying operations.

The research challenge in ICEM lies in the fact that some op-
erations must occur serially. While application-level requests can
use a single API call, peripherals often have complex call/return se-
quences, some of which have tight timing constraints. This requires
integrating traditional blocking synchronization primitives into an
execution model that is completely non-blocking. ICEM solves
this problem by carefully exposing low-level concurrency to drivers
through power locks, a novel non-blocking lock mechanism that in-
tegrates concurrency, energy, and hardware configuration manage-
ment. For example, when a client acquires a driver’s power lock,
ICEM has powered and correctly configured the hardware for that
client. When a power lock falls idle, ICEM powers down the under-
lying hardware. Power locks transform locks, a traditionally passive
data structure, into an active energy management participant.

We have designed and implemented ICEM as a key part of the
second generation of the TinyOS operating system, TinyOS 2.0 (T2).
It has been used to replace many of the ad-hoc policies and interfaces
found in TinyOS 1.0 with three basic system abstractions and a small
library of power lock components. We evaluate ICEM using a rep-
resentative low duty cycle application that logs sensors every five
minutes and sends data to a base station every twelve hours. Using
ICEM, the application has a single line of power management code:
it sets the radio duty cycle when it boots. ICEM achieves 98.4–
99.9% of the energy efficiency of a hand-tuned implementation that
schedules I/O at the application level.

The rest of this paper is structured as follows. In Section 2, we
introduce a sample application that we use as an example throughout
the rest of the paper and provide background information on wire-
less sensor energy profiles and operating systems. In Section 3, we
introduce how ICEM divides device drivers into three concurrency
classes and give their defining characteristics. In Section 4, we de-
scribe how drivers manage their concurrency and energy, describe
power locks, and provide details of the supporting power manage-
ment library. In Section 5 we evaluate ICEM using power traces of
our sample application, runtime instrumentation of library calls, and
a survey of where and and how often the different driver classes ap-
pear. We compare our approach to prior work and existing sensornet
OSes in Section 6, provide insight into future developments in Sec-
tion 7, and conclude in Section 8. Appendix A contains pointers to
the TinyOS 2.0 ICEM source code.

2. BACKGROUND
This section provides background on the challenges and details

of managing energy on a wireless sensor. We start with a descrip-
tion of the sample application used as a running example through-
out the rest of the paper. We describe the split-phase program-
ming and concurrency model common to most sensornet OSes. We
overview ultra-low power hardware characteristics and how they af-
fect both driver implementations and sensornet energy management
as a whole. From this information we observe that application con-
currency gives a sensornet OS the ability to schedule operations in
an energy efficient manner.

2.1 Application
Throughout this paper, we ground our goals and evaluation

through a representative application of long lived, unattended wire-

Every 5 minutes: Every 12 hours:
Write prior samples For all new log entries:
Sample photo active Send current sample
Sample total solar Read next sample
Sample temperature
Sample humidity

Figure 1: Application pseudocode. Every operation is non-blocking.
Rather than try to coordinate sample completion, the loop writes the
previous results to flash. Similarly, while it sends one set of samples
it reads the next set from flash.

less sensors. Every five minutes, the application samples four sen-
sors and logs the readings in flash with a sequence number. Each
log record is ten bytes. Every twelve hours, the application retrieves
new readings from flash and sends them to a gateway. The appli-
cation logs values to flash to provide data reliability in case of tem-
porary or long-term disconnection, a common problem in long-term
deployments [35]. Sampling and sending are completely decoupled:
the two parts have a producer/consumer relationship on the log.

Data latencies of a day are acceptable for many low-rate envi-
ronmental monitoring applications [33, 35]. If needed, the applica-
tion can have a shorter reporting period, but an application saves en-
ergy by sending bursts rather than individual packets [23]. Low duty
cycle sensornets generally reduce radio energy consumption with a
technique called low-power listening (LPL) [25]. In low-power lis-
tening, nodes turn their radios on just long enough to detect a carrier
on the channel. If it detects a carrier, then it keeps the radio on long
enough to detect a packet. Because the LPL check period is much
longer than a packet, a transmitter must send its first packet enough
times for a receiver to have a chance to hear it. The transmitter stops
sending once it receives a link-layer acknowledgment or a timeout
of twice the check period. When a node receives a packet, it stays
awake long enough to receive a second packet. Therefore, a packet
burst amortizes the wakeup cost of the first packet over the follow-up
packets. The LPL implementation used in this paper has a wake-up
duration of 5ms: we configured the application to sample at 1Hz,
giving the radio a 0.5% duty cycle when there is no communication.

2.2 Operating Systems
Packet bursts reduce how long the consumer part of the applica-

tion stays awake when sending data to the base station. Concurrency
reduces how long the producer part of the application stays awake
when sampling. For each sample, the application needs to sample
its four sensors and log the record to flash. Each of these operations
is an I/O operation. Depending on the underlying hardware, the OS
may be able to service some of them concurrently. To allow the
OS to concurrently sample and log readings, the application keeps
two sets of data buffers, one for the current period and one for the
previous period. Figure 1 shows application pseudocode.

To perform these five operations concurrently, an application must
either use non-blocking calls or allocate one thread per call. To pro-
vide concurrency with limited RAM, sensor network OSes, such as
Contiki [5], TinyOS [16], and SOS [12] generally take the first ap-
proach and have a single thread stack. In these OSes, every I/O and
long-running system call is non-blocking and has a completion call-
back/upcall: there is no polling. For the rest of this paper, we use
TinyOS and its programming language, nesC [7], as a representative
example of these non-blocking operating systems.

The split-phase operations these OSes provide are similar to tra-
ditional asynchronous I/O with one important difference: they know
when an application is aware that an I/O operation has completed.
In a threaded system, a device driver will resume threads blocked on
select (or a similar function), but the scheduler may not run the

2

MSP430
Total Solar

Photo Active

Humidity

Temp

Radio Flash

I2C

ADC

SPI

Figure 2: The application uses six peripherals: two SPI devices,
two I2C sensors and two ADC sensors. The two I2C sensors are
on the same chip (same I2C address), but require separate sensing
command sequences.

thread immediately. In contrast, an application making split-phase
I/O requests receives explicit notification from a device driver upon
its completion through a direct upcall. This subtle but important
difference allows a device driver to know exactly when an applica-
tion has been notified about the completion of an I/O event. ICEM
leverages this knowledge, using application I/O requests to precisely
control a device’s power state.

2.3 Hardware
We implemented our application in T2 on the telos platform. Te-

los has an 8MHz 16-bit CPU, a 250kbps 802.15.4 radio, a 2MB ex-
ternal flash, and 10kB of RAM [26]. Our telos nodes have humidity,
temperature, photo active, and total solar sensors. When fully active,
a telos node draws approximately 30mA of current. Its deepest sleep
state draws 7-9µA.

At a high level, two factors drive telos energy consumption. First,
on a pair of AA batteries, a node has an active lifetime of just a few
days. To last for months or years, a node must stretch this active
time out by keeping its peripherals off and processor in a sleep state
99% of the time. Second, its microcontroller has a spectrum of low
power states which keep different hardware resources powered. For
example, a telos cannot drop to its 9µA sleep state when sampling
an ADC sensor or using a bus. We defer detailed measurements of
the telos’s power states and latencies to Section 5.

Figure 2 shows how the six peripherals the application uses are
attached to the microcontroller. There are several opportunities for
concurrency. Two peripherals are digital sensors that use the I2C
bus, and two are analog sensors that share the on-chip ADC. The
OS can concurrently sample one digital and one analog sensor. The
OS must arbitrate between sensors of the same kind. The flash and
radio are both on the SPI bus, but the radio only needs the bus when
loading a packet into transmit memory. Thus the OS can interleave
flash reads and radio transmissions. Because the application sched-
ules sensing and sending cycles independently, they can overlap and
there can be up to seven outstanding I/O operations.

An OS can schedule and interleave application-level I/O calls, but
soft real-time requirements mean some device drivers need to limit
concurrency so they can perform small atomic sets of split-phase op-
erations. For example, when the CC2420 radio receives a packet, its
driver needs to perform two separate reads over the SPI bus. The
first read is for the physical layer length field, which it uses to de-
termine how long the second read must be. Other drivers require
exclusive access to multiple resources at once in order to operate
properly. For example, the telos platform can configure its voltage
reference to have different voltage levels; for some analog sensors,
sampling requires not only exclusive access to the ADC but also to
the voltage reference.

Microcontrollers minimize pin counts to reduce leakage current
and packaging size. Therefore, MCUs often reuse pins for multiple
purposes. For example, the USART0 module on the MSP430 mi-

crocontroller implements three bus protocols – I2C, SPI, and UART
– that all share a common set of I/O pins. Only one can be active
at any given time, and the MSP430 has an intricate reset sequence
for switching between them. The application’s digital sensors use a
separate I2C bus. They do not share pins with the radio and flash
chips SPI bus.

2.4 Managing Energy
Many peripherals have significant wake-up times, which waste

energy by drawing current without doing useful work. To opti-
mize for energy, an OS must minimize how often it pays this cost.
Scheduling I/O in bursts – whether it be ADC samples and powering
up the reference voltage or sending packets and the need to wake up
a receiver – amortizes this cost, reducing the average energy con-
sumed per operation. Providing the intended workload as a set of
concurrent requests allows the OS to use this application informa-
tion to save energy.

But as the examples above showed, some low-level I/Os must be
serialized and some device drivers require simultaneous access to
multiple peripherals. In these cases, if a driver could tell the OS
that it requires exclusive access to a resource, it would provide both
energy and concurrency management information.

This request is essentially a lock, but as TinyOS is completely
non-blocking, it must be a split-phase lock. Furthermore, granting
the lock to a device driver may first require configuring hardware.
For example, granting the SPI bus to a telos driver requires recon-
figuring the USART into SPI mode. However, on other platforms,
such as the mica family [15], the SPI has a dedicated set of pins.
Making device drivers platform-independent requires encapsulating
hardware configuration into the lock abstraction itself.

3. ICEM DRIVERS
ICEM defines three broad concurrency classes: virtualized, ded-

icated, and shared. Figure 3 shows how the three differ in how
they expose their concurrency to a user. This section presents the
three classes in order of increasing complexity to the user. It gives
concrete examples of when each class is used through the implemen-
tation of a stack for the radio used on most sensor nodes today. The
next section describes how each class is implemented and how they
work together to manage the overall power state of a sensor node.

3.1 Virtualized
Virtualized drivers are the simplest for a client to use: they have

only a functional/data path. They support multiple users through im-
plicit concurrency. Virtualized drivers buffer requests or otherwise
maintain state in order to give each client the appearance of inde-
pendence. It uses this per-client state to manage its concurrency,
scheduling client requests in order to provide fairness or other de-
sired properties. Because virtualized drivers can introduce latency,
there is a tradeoff between simplicity and control. For this reason,
application-level I/O interfaces are typically virtualized, while some
lower-level ones are not.

For example, a data-link packet sender is a virtualized driver.
Each client can have a single outstanding packet. The packet
layer buffers requests and services them with a round-robin pol-
icy, providing a limited (per-packet) form of fair queuing. Simi-
larly, application-level millisecond timers are a virtualized driver.
The driver implementation maintains per-client state, which it uses
to schedule the underlying hardware timer in order to minimize the
number of interrupts.

Maintaining per-client state allows a virtualized driver to auto-
matically control its power state. For example, when a virtualized

3

Virtualizer Checked SharedDedicated

Virtualized Shared Arbiter Shared Arbiter

Unchecked Shared

Figure 3: ICEM’s three driver classes: virtualized, shared, and dedicated. The three squares mean that a component can support multiple
clients: each client is an oval. Dedicated drivers have a functional interface as well an explicit power interface. Virtualized drivers provide
implicit concurrency through a functional interface. Shared drivers provide explicit concurrency through a functional interface as well as a
lock interface. Some shared drivers check client ownership, and some trust clients. Ovals are an instance of a client to a multi-client driver
and a shaded box is an ICEM library component. Section 4.3 presents the details of the library.

timer has no active timers and does not require a real-time clock, it
disables interrupts and can stop the hardware counter.

3.2 Dedicated
Dedicated drivers support a single user. Low-level hardware re-

sources, such as counter/compare timer registers or a general pur-
pose I/O (GPIO) pin have dedicated drivers. Additionally, the low-
est level of most hardware independent abstractions, such as packet
sending, are typically dedicated. They give their single user com-
plete control over requests and energy management. While they do
not have software concurrency, dedicated drivers can handle hard-
ware concurrency. For example, the USART on the MSP430 family
of microcontrollers has a one byte FIFO for transmission, and so a
dedicated USART can handle two pending requests.

In addition to a functional interface, dedicated drivers may pro-
vide an explicit power control interface. Not all dedicated drivers
provide a power control interface, as sometimes power control is
implicit in the functional interface. For example, enabling interrupts
on a GPIO pin typically involves setting an enable bit in a control
register: no additional on/off operations are needed.

3.3 Shared
Shared drivers provide explicit concurrency. They support mul-

tiple users, but users must contend for the driver through a lock.
Shared drivers are typically abstractions which require or benefit
from a single client being able to perform an atomic series of op-
erations. Shared drivers are also used when an operation requires
exclusive access to multiple underlying resources at the same time.
Calling commands on a shared driver without holding its lock is an
error. Widely used shared drivers such as buses check that their lock
is held by a caller, while narrowly used shared drivers such as an I/O
pin driver assume those users are correct.

Like virtualized drivers, shared drivers buffer client requests: both
allocate per-client state. The difference lies in what requests are
buffered. Virtualized drivers buffer functional requests (e.g., send
a packet), while shared drivers buffer lock requests. Since the lock
abstraction is common across all shared drivers, its implementation
can be a library that many drivers reuse. As we discuss in the next
section, as this library manages concurrency and pending requests it
also manages a shared driver’s power state and configuration.

3.4 Example: CC2420 Stack
Figure 4 shows the component structure of an example complex

implementation, the ChipCon CC2420 radio stack. The CC2420 is
the dominant radio used in sensornets today, due to its relatively high
bandwidth (250kbps), range (up to 100 meters), and IEEE standard
frame format (802.15.4).

At the top level, the CC2420 stack provides virtualized packet
transmission and reception. When a client calls send(), the data-
link layer virtualizer places the packet in its transmission queue. The

SpiClient

Data Link Layer

Receiver Sender

Receive

Send

SpiClient

SpiClient

Control

Timer

TimerGPIO

Figure 4: The software structure of the CC2420 radio stack. It uses
three SPI clients (shared), dedicated GPIO interrupts, one dedicated
high-precision timer, one virtualized lower-precision timer, and pro-
vides a virtualized sending and receiving abstraction. Black lines
represent data or functional interfaces, while grey lines represent
control interfaces such as power or locking.

virtualizer sits on top of a dedicated abstraction, serializing requests
to its single functional interface. As each sender has a single queue
entry, the virtualizer gives each one a fair share of the packet trans-
missions. Protocols may and often do add additional queuing above.
These virtualizations sit on top of dedicated abstractions of the send
path, receive path, and control path. In addition to channel selec-
tion and transmit power, the dedicated control paths provide explicit
power management interfaces.

The dedicated layers use several drivers, including a dedicated
timer for MAC backoff and acknowledgments, a shared bus for in-
teracting with the radio chip, dedicated I/O pins, and a virtual timer
for software IRQ on radio startup. The MAC timer is dedicated be-
cause it needs to be precise; the radio startup timer is virtualized
because a bit of jitter when turning on the radio is acceptable. The
bus is shared because, as noted in Section 2.3, multiple devices such
as external flash chips and sensors use it, and because the radio must
perform atomic command/response sequences.

4. INTEGRATED MANAGEMENT
The goal of decomposing drivers into three classes is to provide

a limited set of concurrency and power management models that
can represent most sensornet devices. The prior section described
how these driver classes appear to a user and distinguished when
each class is typically used. This section describes how they are
implemented and how ICEM integrates distributed peripheral energy
management with centralized MCU sleep state control.

4

4.1 Driver Energy Management
As Section 3 described, dedicated drivers leave all concurrency

and energy management to their client. Dedicated drivers provide
explicit energy control through one of three interfaces: StdControl
(single-phase control), SplitControl (split-phase control) or Async-
StdControl (single-phase control that is safe to call from within an
interrupt handler). The lowest-level hardware abstractions are al-
ways dedicated, as they represent a specific physical resource, and
they typically provide the AsyncStdControl interface so they can
be called from code that needs immediate response to an inter-
rupt. SplitControl and StdControl require going through the TinyOS
scheduler, which can introduce scheduling latencies. SplitControl is
for devices that require split-phase operations when powering on or
off: examples include peripherals that have warmup latencies, or pe-
ripherals whose power operations require using a shared device such
as bus. StdControl is for devices that can be controlled immediately:
examples include on-chip systems such as the ADC or a counter.
Higher-level dedicated drivers, such as the radio, typically provide
StdControl or SplitControl.

Virtualized and shared drivers integrate concurrency control
and energy management. Virtualized driver implementations are
interface-specific, as the interface they provide determines their re-
quired buffering. A virtualized driver often has driver-specific power
management logic, depending on what class of driver it sits on top
of. The virtualizer is a central point of control: it is aware of all
outstanding requests and the energy state of its underlying driver.

Shared drivers all have a common interface to their concurrency
mechanism, a lock. As synchronization primitives have difficult
edge cases, designing shared drivers so they can share a lock imple-
mentation leads to simpler and more robust implementations. How-
ever, factoring concurrency out in this fashion complicates energy
management, as concurrency state is no longer directly available to
the driver. In practice, hardware devices underlying a shared ab-
straction need to be on when a client holds the lock and can be off
when no-one holds the lock. The lock itself therefore has the knowl-
edge necessary to manage the underlying device. Rather than being
a simple data structure or pushing complex state change callbacks
into the core driver, the lock protecting a shared driver becomes an
active manager of the underlying hardware resource power states.

4.2 Split-phase Power Locks
ICEM supports shared drivers with power locks, synchroniza-

tion primitives which couple energy, configuration, and concurrency
management. They couple energy and concurrency management by
turning devices off when the lock falls idle. They couple configura-
tion and concurrency management by allowing a client to specify a
device configuration. Before an arbiter grants the lock to a client, it
applies that client’s configuration.

Traditionally, locks such as mutexes and semaphores are block-
ing constructs that protect critical sections or shared data structures.
However, as TinyOS does not have blocking calls, its locks must be
split-phase. A component calls a function to request a power lock
and handles a callback when it acquires the lock. Systems whose
timing is critical can try to avoid this split-phase operation when the
lock is idle using an immediate request. Immediate requests, like
operations such as pthread_mutex_trylock() in traditional threaded
OSs, return if the lock was acquired but do not enter a waiting queue
if not: the typical code pattern is to issue a standard request if the
immediate request fails.

Power locks use recursive requests as a yielding mechanism. If
a caller requests a lock when it already has a request pending, the
request returns an error code. If a lock holder re-requests the lock,
its request is enqueued: some time after releasing the lock it will

Lock

Arbiter
Configure

Default
owner

Default
owner

Power

 Arbiter

Power
Manager

Configuration

Arbiter
Configure

HW-specific
Configure

(a) Arbiter.

Lock

Arbiter
Configure

Default
owner

Default
owner

Power

 Arbiter

Power
Manager

Configuration

Arbiter
Configure

HW-specific
Configure

(b) Configurator.
Lock

Arbiter
Configure

Default
owner

Default
owner

Power

 Arbiter

Power
Manager

Configuration

Arbiter
Configure

HW-specific
Configure

(c) Power Manager.

Figure 5: The three types of components in the ICEM library. Later
figures annotate interfaces with capital letters: L for Lock, D for
Default owner, P for Power, AC for Arbiter Configure, and HC for
Hardware Configure. Each caller of a parameterized interface (the
boxes) has a unique identifier that it passes in every call, so the callee
can distinguish callers.

receive another granted callback. Drivers that execute long or com-
plex operations across several atomic actions often use a cooperative
scheduling approach, re-requesting a lock as soon as it is granted and
releasing it periodically.

Because TinyOS has a single stack, it has no threads. It therefore
has no traditional OS concept of an execution context: there are no
long-running sequential code sequences with serialized operations.
Therefore, while code can request and release locks, answering the
question of who owns a lock is difficult. Our approach equates call
sites with clients: each lock in the system can have a unique set of
candidate holders. This set is determined by which components have
registered with the lock interface. Unlike threads or objects, TinyOS
components can only be created at compile-time. Therefore, a power
lock’s candidate holder set is fixed at compile-time.

As power lock requests are non-blocking, a component can re-
quest several locks in parallel and proceed when they are all granted.
This of course raises deadlock concerns. As not all power locks
grant in their request order and requests are non-blocking, requesting
multiple locks in parallel does not specify a temporal order between
the requests. It is possible for two drivers to request a set of locks in
the same order and still encounter deadlock. In practice, we have yet
to encounter a single deadlock bug in the T2 driver architecture due
to how drivers are structured. As power locks usually protect hard-
ware resources, there is typically a clear lock order encoded in the
driver structure, and code reuse is a simple and easy way to maintain
this order. Section 5.5 has one example of this, the light and temper-
ature sensors of the MTS300 sensor board. Nevertheless, as drivers
and the OS grow in complexity, deadlock avoidance and detection
may become a serious concern. We present ideas on how to address
this problem in Section 7, noting that the complete lack of explicit
execution contexts may raise difficult challenges.

4.3 Component Library
Because power locks incorporate a queueing policy, a power man-

agement policy, and hardware configuration, ICEM provides a li-
brary of components that allow implementers of T2 device drivers
to easily combine small reusable building blocks into a complete
power lock implementation. The library has three types of compo-
nents: arbiters, power managers, and configurators. Figure 5 shows
these three classes of components and their interfaces. Clients prin-
cipally use the Lock interface.

5

4.3.1 Arbiters
Arbiters are a power lock’s core component. Arbiters provide

a split-phase lock interface that arbitrates between outstanding re-
quests for a resource. A power lock’s arbiter determines its request
queueing policy. In addition to standard clients that use the Lock
interface, arbiters can have at most one client which uses the De-
faultOwner interface. A DefaultOwner cannot explicitly request the
lock: instead, when the lock goes idle, the arbiter defaults it to this
special client. In effect, a default client always has an implicit lock
request that is lower priority than any other client: the arbiter au-
tomatically grants the lock to it when there are no other pending
requests. Because the default client holds onto the lock whenever
it is idle, the DefaultOwner interface has a callback to tell it when
another client issues a request.

In addition to the Lock and DefaultOwner interfaces, arbiters use
the Configuration interface. Whenever the arbiter grants the lock to
one of its clients, it calls the corresponding Configuration interface
before signaling the granted callback to the client. If the client has
not registered a Configuration implementation, it is a null call that
the compiler prunes away.

The component library has two arbiter policies, round robin and
first come first served, which differ in their lock grant order and
state requirements. In addition to full power locks, the library also
includes simple versions, which do not include configuration or en-
ergy management. Section 5 evaluates the differences between the
four arbiters.

4.3.2 Power Managers
Power managers implement the DefaultOwner interface and use

one of the explicit power control interfaces (StdControl, SplitCon-
trol, AsyncStdControl). A power manager specifies a power lock’s
energy management policy. At boot, all power managers have con-
trol over a lock and all devices are powered down. When a power
manager receives a callback from its arbiter that the lock has been re-
quested, it takes this as a signal that the device needs to be used and
must be powered up. Conversely, when a power manager receives
the lock from its arbiter, it takes this as a signal that the device is idle
and may be powered down again.

Because power locks are split-phase, devices that require split-
phase power control do not pose any particular challenge. Consider a
power manager that sits on top of a dedicated driver with a SplitCon-
trol interface. When it receives a callback that a client has requested
the lock, it calls SplitControl.start(). Some time later, the operation
completes with the split-phase SplitControl.startDone() callback. In
this callback, the power manager releases the power lock as the un-
derlying hardware is now ready for use.

The component library has two power manager policies, immedi-
ate and deferred. The former powers off a driver as soon as the lock
falls idle, while the latter waits for a timeout. TinyOS has three dif-
ferent power control interfaces, causing there to be six power man-
ager components.

4.3.3 Configurators
Configurators are part of a lock granting path. They implement

the Configuration interface that arbiters use. Configurators are for
when power lock clients have a code preamble which should exe-
cute before they perform any operations. Configurators allow clients
to incorporate this logic into an arbiter. This is useful when many
clients have the same code preamble: one implementation can serve
them all.

Configurators are device-specific and so are spread throughout the
TinyOS code base. Currently, there are configurators for the At-
mega128 ADC as well as the MSP430 ADC, SPI, USART, and I2C.

sleep_state_t currentSleepState;
bool dirtyMcuState;

void enterSleep(void) {
disable_interrupts();
if (dirtyMcuState) {
dirtyMcuState = FALSE;
currentSleepState = mcuPowerState();

}
setSleepState(MAX(currentSleepState, sleepHook()));
atomically_enable_interrupts_and_sleep();

}

Figure 6: MCU sleep logic. The sleep state selection starts
by a platform-specific function mcuPowerState that computes
the lowest state that is safe based on set of devices that are
currently enabled. To avoid unnecessary recomputing of the
mcuPowerState every time sleep mode is entered, an (optional)
dirtyMcuState bit can be set by any code that affects state
checked by mcuPowerState. In the next step, the manager mod-
ulates the computed state with the application preferences that the
manager receives via a special sleepHook function call.

4.4 Sleep Energy Management
Power locks integrate concurrency and energy management for

system peripherals. The second part of an efficient energy man-
agement strategy is to control the sleep state of a node’s microcon-
troller. While a node’s microcontroller typically has a low current
draw compared to peripherals such as the radio, over long time pe-
riods the cost can add up. For example, a telos node can last ap-
proximately two months with all of its peripherals off but its micro-
controller active. A telos in its deepest sleep state can in theory last
thirty years, far beyond the effective shelf life of most batteries.

Microcontrollers typically have a spectrum of low power modes
(LPMs) that support keeping different peripherals enabled. Com-
puting the lowest safe power state of the microcontroller requires
system-wide information on whether various peripherals are in use.
This computation, however, can have complex dependencies, such
that individual device drivers may not be able to judge their own
power state. For example, many microcontrollers allow software to
configure whether their lowest power clock is driven by an inter-
nal or external oscillator. Furthermore, calculating the lowest power
state can be complex, as there are many cases to consider. As the
OS may enter a sleep state after every interrupt and this computa-
tion must occur with interrupts disabled, it can become an interrupt
handling rate bottleneck.

ICEM addresses these challenges through three mechanisms.
First, every microcontroller has a sleep function that calculates the
lowest safe power state based on which interrupt sources and on-chip
devices (such as ADCs) are enabled. Second, the OS keeps track of
a dirty bit, and only computes the power state when the bit is set.
Drivers set the dirty bit whenever they touch hardware that might
change the sleep state. Finally, the sleep state computation has an
override hook with which a driver can specify a minimum safe sleep
state. The OS picks a sleep state whose enabled peripherals are the
union of its calculation and this hook.

The timer driver of the atmega128 is one example use of this hook.
Some low power states of the atmega128 have a significant wakeup
latency (a few ms). These latencies can disrupt a timer system that
needs to service two interrupts in quick succession (e.g., a timer in
3ms and another in 4ms), as the second interrupt may be dropped.
The timer driver registers an override hook such that it makes sure
the processor stays in a fast wakeup sleep state in these cases. Fig-
ure 6 shows ICEM’s microcontroller power management logic in
C-like pseudocode.

6

Device Current Time Power State
Microcontroller

Active 1.92mA NA NA
LPM1 182µA NA NA
LPM3 9µA NA NA
Vref On 536µA NA NA

Radio
Receive (LPL Check) 18.86mA 5ms LPM3
Send (1 packet) (0dB) 18.92mA 12ms-1s (LPL) LPM3

Flash
Read Record 1.75mA 5ms LPM1
Write Record 2.69mA 5ms LPM1

Analog Sensors 1.46mA 2ms LPM1
Humidity Sensor 458µA 75ms LPM3
Temperature Sensor 458µA 220ms LPM3

Table 1: Current draw, duration, and the lowest MCU power state of
the major components used in our example application on the telos
platform.

The set of power locks associated with the shared hardware re-
sources, together with the microcontroller manager forms the basis
for a comprehensive control of the power state of the hardware with
minimum explicit run-time involvement from the application. As a
result, ICEM has a decentralized energy management scheme that
keeps the system as a whole in the lowest possible energy consump-
tion state that guarantees safe servicing of the current workload.

5. EVALUATION
ICEM’s goal is to allow simple sensornet applications to achieve

high energy efficiency. This section evaluates how well ICEM
achieves these goals in four ways. First, it measures the power
states of the telos node and microbenchmarks of the CPU, RAM,
and ROM overhead of ICEM’s library components. Second, using
these benchmarks and high-frequency current traces, it compares the
energy consumption of our sample application implemented three
ways: with ICEM, in a single-threaded model, and with hand-tuned
application-specific power management. Third, it compares the
complexity of the hand-tuned application with that built over ICEM,
in terms of lines of code. Fourth, through examples and our imple-
mentation of the device drivers on four T2 platforms, it examines
whether ICEM is flexible enough to handle most sensornet periph-
erals and general enough to be widely used.

5.1 Microbenchmarks: Telos Energy
The instantaneous current draw of a telos node is a function of

the microcontroller power state, whether the radio, flash and sensor
peripherals are on, and what operations active peripherals are per-
forming. Given a perfect measurement setup, the energy consumed
by a node is proportional to the time integral of a trace of its current
consumption. However, the three orders of magnitude difference in
a node’s power states make it difficult to measure at this precision.
A measurement circuit that can accurately measure µA sleep cur-
rents cannot measure mA active currents, and one that measures mA
currents cannot measure µA currents due to circuit noise.1

We therefore follow the methodology of earlier low-power stud-
ies [23] by measuring the average current draws of specific sleep
states and I/O operations using a precision multimeter. To measure
the time to completion of an operation we wrote applications that
performed an operation once and observed the changes in current
draw on an oscilloscope. To measure the average power cost of I/O

1This is why precision digital multimeters have multiple precision
settings.

ROM Overhead Per Client

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Num Clients

B
y
te

s FCFS+
RR+
FCFS
RR

Figure 7: Arbiter program memory overhead as the number of
clients increases.

RAM (bytes) ROM (bytes)
Async Std Split Async Std Split

Immediate PM 0 5 5 0 188 188
Deferred PM 4 6 6 358 412 412

Table 2: Memory overhead of using the power manager library com-
ponents

operations we wrote microbenchmarks that repeatedly perform one
operation in an infinite loop. To measure the average cost of a sleep
state we used the power-state override of ICEM’s sleep state cal-
culation. To measure the length of each operation we connected a
node to an oscilloscope and measured the timing of changes in cur-
rent draw. To the best of our knowledge, these are the first published
measurements for current (revision B) telos nodes: prior results are
either derived from datasheets [26] or for the revision A, which has
different components [24]. These measurements differ from the val-
ues advertised in the telos datasheet, in some cases, such as the idle
sleep current, by as much as 50%.

Table 1 shows the results of these measurements. The processor
values are reported for each power state and include leakage currents
of platform peripherals such as sensors, USB, and flash. The periph-
eral values do not include the processor current draw; instead, they
show the lowest power state the processor can enter while that pe-
ripheral is in use. This is LPM3 for the radio because the SPI bus is
off except for a few hundred microseconds of radio commands. It is
LPM1 for the flash because logging operations keep the SPI bus on.
It is also LPM1 for the analog sensors because the ADC requires
a clock source, while it is LPM3 for the two I2C sensors because
the bus is in software on GPIO pins. Finally, the voltage reference
requires a 17ms warmup time before it can be used.

5.2 Microbenchmarks: Power Lock Library
The measurements in Table 1 provide the basic means for calcu-

lating the energy costs of different I/O operations and sleep states.
Using ICEM, an application can submit all of its I/O requests in
parallel, allowing the OS to schedule them as it sees fit in order to
minimize energy consumption. Compared to a hand-tuned imple-
mentation that optimally controls components from the application,
ICEM adds overhead in three ways. First, the generalized library
components use extra code space and RAM. Second, calls that sit
on top of shared drivers must go through arbiters, which takes CPU
cycles and therefore energy. Finally, ICEM drivers must be able
to handle serialized requests, so must consider warmup times when
deciding on a power down policy.

As mentioned in Section 4.3.1, the ICEM library has four arbiter
implementations, supporting two arbiter policies and two levels of
complexity. The two policies are round-robin (RR) and first-come-

7

Arbiter Overhead

0

100

200

300

400

Immediate
Request

Queueing
Request

Granted
Request

Release Dequeuing
Release

C
y
cl

e
s

FCFS
RR

(a) Cycle counts of arbiter locking com-
mands. The additional bars are the addi-
tional cycles a default client adds.

Breakdown of Granted Request

0

100

200

300

400

FCFS RR FCFS+ RR+

C
y
cl

e
s Grant

Pop
Release
Post
Request

(b) Cycle count breakdowns of power
lock granting a non-queueing request.

0

100

200

300

400

500

Immediate Requested Granted

C
y
cl
e
s

Async
Std
Split
Async+
Std+
Split+

(c) Cycle count overhead of using a
power manager.

Figure 8: Cycle count overheads of common power lock operations. The telos processor runs at 4MHz.

Data Logging: (µAs)
EFlashWrite = (5ms) · (2.69mA) 13.45
ETemp = (220ms) · (458µA) 100.76
EHumidity = (75ms) · (458µA) 34.35
EV ref = (17µs) · (536µA) 9.112
EPhoto = (2ms) · (1.46mA) 2.92
ETotalSolar = (2ms) · (1.46mA) 2.92
ELPM3 = (286ms) · (9µA) 2.574
ELPM1 = (9ms) · (182µA) 1.638
Total per sample ≈ 168

Data Upload: (µAs)
EFlashRead = 144 · (5ms) · (1.75mA) 1260
ERadioPream = (1000ms) · (18.92mA) 18, 920
ERadioSend = 144 · (12ms) · (18.92mA) 32, 694
ELPM3 = (2008ms) · (9µA) 18
ELPM1 = (720ms) · (182µA) 131
Total per send ≈ 53, 023

Listening: (µAs)
ELPLcheck = (5ms) · 18.86mA 94.3
ELPM3 = (5ms) · (9µA) 0.045
Total per check ≈ 94.3

Total per Day: (µAs)
Esample ≈ (288 samples

day
) · (168µAs) 48,384

Esend ≈ (2 sends
day

) · (53, 023µAs) 106,010
ELPL ≈ (86400 checks

day
) · (94.3µAs) 8,147,520

EIdle ≈ (85878 s
day

) · (9µA) 772,898
Total ≈ 9, 074, 830

Table 3: Per-day energy consumption of the hand-tuned implemen-
tation in µAs. A pair of AA batteries have approximately 2700mAh,
or 9.72·109µAs: a node with this duty cycle can last approximately
2.93 years on 2 AA batteries. With no listening a node could theo-
retically last 28.6 years, disregarding the shelf-life of the batteries.

first-served (FCFS). The former scans across the clients in a deter-
ministic order, while the latter grants the power lock to clients in the
order they requested it. For each policy, there is a full arbiter imple-
mentation that supports power management and a simplified one that
does not (it has no default client). In the figures and the rest of the
text, a plus (+) denotes a complete arbiter (e.g., RR+) while a lack
of a plus (e.g., FCFS) denotes a simple arbiter. Additionally, when
referring to power managers, a plus (+) denotes a deferred power
manager (e.g. Async+) while a lack of a plus denotes an immediate
power manager (e.g. Split).

Figure 7 shows the code size of the four arbiters as the number
of clients increases. Arbiters have an initial overhead of between
350 and 550 bytes for a single connected client, and this cost in-
creases linearly with the number of clients. The dip between 6 and 7
clients is due to automatic inlining introduced by the compiler. For
n clients, an FCFS arbiter uses 6 + n bytes of RAM and an RR ar-
biter uses 8 + dn

8
e bytes: an FCFS maintains an array-based queue,

while an RR maintains a bitmask of pending requests.
Figure 8(a) shows the CPU cycle overhead of performing arbiter

operations. The most expensive is the complete request-grant cy-
cle, which takes 300-350 cycles (75 - 87µs). Full arbiters take
longer because they must tell the default client to release the lock.
Figure 8(b) shows where these cycles go. They are evenly spread
across five parts: the request call, posting a task in the operating
system to signal the grant, popping the request off the queue, and
signaling the grant. The arbiter posts a task to prevent possible call-
ing loops. Figure 8(c) shows the additional overhead that a power
manager introduces for the three different dedicated driver power in-
terfaces (AsyncStdControl, StdControl, and SplitControl). Adding
power management can add up to an additional 400 cycles of over-
head (100µs). Finally, Table 2 shows the ROM and RAM overhead
of the different power managers.

The telos platform uses immediate power managers for the bus
and ADC and a deferred power manager for the voltage reference
and flash chip. Because the voltage reference has a 17ms wakeup
time, our implementation gives it a 20ms power-down timeout.
Therefore, the ADC can service periodic requests with an inter-
request interval less than 17ms, but if the interval is 20ms or longer,
there is a 17ms lag on some requests.

5.3 Application Performance
The telos power and arbiter cycle count measurements allow us to

quantify the energy consumption of four different implementations
of the low-rate sampling application. The first is our ICEM imple-
mentation, whose pseudocode is in Figure 1. It uses decoupled sense
and send timers and issues all I/O operations as a series of concurrent
requests on top of ICEM. The second and third are single-threaded
versions with blocking I/O calls so ICEM cannot use concurrency to

8

Figure 9: Oscilloscope trace of one sample period for our example sensornet application, with spikes and important events labeled. Issues
with our measurement circuit means that the measured MCU current levels are approximately 800µA above the accurate measurements in
Table 1.

70%

75%

80%

85%

90%

95%

100%

0.01 0.1 1 10
Sampling Interval (min)

Li
fe

tim
e

(%
 o

f i
de

al
)

0

0.5

1

1.5

2

2.5

3

Id
ea

l l
ife

tim
e

(y
ea

rs
)

ICEM
Serial+
Serial-

Figure 10: Node lifetime running the sampling application with dif-
ferent sampling periods and I/O scheduling approaches. The dark
line is the expected lifetime of an ideal, hand-tuned application.
The grey lines are the relative lifetimes of ICEM and two serialized
(blocking) approaches. Serial+ is the optimal I/O ordering while
Serial- is the worst-case ordering.

reduce energy usage. The two single-threaded versions differ in their
sensor sampling order, which affects how often deferred drivers are
powered on and off. The last version is a hand-tuned implementation
which has no arbiter overhead and whose application logic optimally
schedules I/O and component power states, Table 3 outlines energy
usage per day for this hand-tuned version.

ICEM’s effects are visible in the application-level sensing and
sending logic. Figure 9 shows a power trace of the ICEM imple-
mentation on the sense-and-log step, detailing the relevant events
corresponding to the ICEM pseudocode. “Write prior samples” cor-
responds to the log write and log timeout events. “Sample photo
active” and “sample total solar” correspond to voltage reference
warmup, analog samples, and voltage reference timeout events.
“Sample temperature” and “sample humidity” correspond to events
of similar names as well as the digital sensor timeout, which exists in
case the digital sensor does not respond. The digital sensors, which
must be serialized, dominate execution time. Figure 10 compares
the expected lifetimes of the four implementations as the sampling
period is varied. The y-axis on the right shows the absolute life-
time of the hand-tuned implementation, while the y-axis on the left
shows the relative lifetimes of the other three implementations when
compared to the ideal, hand-tuned one.

Figure 10 shows that ICEM executes the application logic effi-
ciently. The values in this figure assume an LPL check period of

Every 5 minutes: Every 12 hours:
Turn on SPI bus Turn on SPI bus
Turn on flash chip Turn on radio
Turn on voltage reference Turn on flash chip
Turn on I2C bus while (new readings):
Log prior readings turn on SPI bus
Start humidity sample send prior reading
Wait 5ms for log get next reading
Turn off flash chip wait 5ms for log
Turn off SPI bus turn off SPI bus
Wait 12ms for vref wait for send
Turn on ADC
Start total solar sample
Wait 2ms for total solar
Start photo active sample
Wait 2ms for photo active
Turn off ADC
Turn off vref
Wait 34ms for humidity
Start temperature sample
Wait 220ms for temperature
Turn off I2C bus

Figure 11: Pseudocode for the hand-tuned implementation.

1s and reporting to the base station every 144 samples. An ICEM
node will have a lifetime between 98.4% and 99.9% of the hand-
tuned implementation depending on the sampling period chosen. In
comparison to the hand-tuned implementation, the ICEM version
wastes energy in two ways. First, it spends time in active mode due
to power lock overheads. Second, it has the timeout on the voltage
reference, which the hand-tuned implementation knows to turn off
immediately after the second ADC reading. In the sensing cycle,
there are several arbiter operations, which all together are 1800 cy-
cles per sample, for a total of 4100µAs per day. For sending, ICEM
and the hand-tuned implementations perform identically. The de-
ferred power manager for the flash chip consumes a small amount
of energy with its timeout timer, but as this occurs very rarely and is
less than a millisecond long, it is negligible.

The single-threaded approach is significantly less efficient (be-
tween 83% and 96% in the best case); additionally, the order in
which sensors are sampled has significant effects on its lifetime.
This waste is predominantly because these implementations must
serialize reading from the log and sending packets, leaving the radio
idle for an additional 5ms per sample sent. There is also a small in-
efficiency in the sensing loop, as the threaded versions spend an ad-
ditional 5ms in LPM1 as they cannot sample the ADC and write to
the log concurrently. The dominance of the sending loop on energy
consumption is reflected in Figure 10 as an increase in efficiency
as the sampling/sending period is increased. The less often packets
need to be sent, the less energy will be consumed in the process.

9

ReadVirtualizer Arbiter

Adc

Power
ManagerAtm128Adc

ADC Client

Config

L

AC

HC

D

P

Figure 12: Component architecture of the analog-to-digital conver-
sion driver on the atmega128 microcontroller. Dashed polygons rep-
resent components the client must instantiate or provide. For exam-
ple, a component that uses the ADC must instantiate an ADC client
and connect an ADC configurator.

The energy cost of LPL checks, however, cause the node lifetime to
asymptotically approach about 3 years.

In summary, these results show that with ICEM, power consump-
tion is dominated by hardware (e.g., sleep mode consumption) and
algorithmic issues (e.g., which sensors to sample or the choice of
low-power-listening scheme) and not by low-level details of soft-
ware implementation (e.g., which order sensors are sampled in). Fi-
nally, as suggested by Table 3, a device that enables low-power lis-
tening to receive messages at any time spends essentially all of its
energy checking the radio channel for activity.

5.4 Code Complexity
The major change from the ICEM to the hand-tuned application

is the addition of code to explicitly control the power state of all
peripherals, as shown in Figure 11. Written in nesC [7](the imple-
mentation language of TinyOS), the hand-tuned implementation is
approximately 400 statements, with several edge cases due to the
contention for the SPI bus between log reads, log writes, and packet
transmissions. In contrast, the ICEM implementation is 68 nesC
statements, most of whose complexity is in correctly dealing with
the seek pointer in the log. Of those statements, only one deals with
energy management: setting the LPL check period to be one second.

5.5 Example Drivers
For ICEM to be an effective architecture for sensor node device

drivers, it must be able to handle the diverse peripherals that low-
power sensor nodes have. We have implemented drivers for five
TinyOS platforms (mica2, mica2dot, micaZ, telos, and eyes) and
three sensor boards (mts100, mts300, telos). This represents a total
of 114 drivers: 52 dedicated, 21 shared, and 41 virtualized.

Next we present four example device drivers in T2. All four have
been in active use by the sensornet community for over a year. We
chose these drivers because they highlight interesting requirements
sensornet hardware can introduce and how our implementations use
power locks to meet these requirements while providing simple API.

5.5.1 Atmega128 ADC
The Atmega128 microcontroller has an on-board 10-bit analog-

to-digital converter with 8 single-ended input channels. Configuring
the Atmega128 to take a sample requires configuring three param-
eters: input channel, reference voltage source, and clock prescaler.
The ADC can use either an internal 2.5V source or an IO pin for
a reference voltage. The clock prescaler allows software to adjust
the ratio between the ADC clock rate and the core clock frequency
in order to maintain timing requirements when the processor is run-

Photo PinADC Client

Photo Client

ReadVirtualizer

Photo

Light
Arbiter

Pin
Arbiter

Power
Manager

L
D

P

P

L

Figure 13: Component architecture of the light sensor of the
MTS300 sensor board for the Atmega128-based mica family of sen-
sor nodes. The MTS300’s temperature sensor shares a pin with the
light sensor, requiring two levels of arbitration.

ning at a slower (and lower power) speed. Sensors typically only
configure the channel and reference voltage.

Figure 12 shows the component structure of the Atmega128 ADC
driver. The ADC is a virtualized service that uses a round robin ar-
biter to service requests. To sample from the ADC, a program must
instantiate an ADC client and provide a component that configures
the ADC as needed. When a user of the client requests an ADC
sample, the client requests the lock on the ADC from the arbiter and
returns. When the lock is granted, the arbiter has automatically con-
figured the ADC for a sample and the client requests a sample from
the underlying ADC. When the ADC lock is idle, the arbiter powers
down the ADC through the power manager, which clears the enable
bit in the ADC control register. When the arbiter receives a lock re-
quest, it tells the power manager to turn on the ADC and the power
manager sets the ADC enable bit.

5.5.2 MTS300 Photo Sensor
The MTS300 is a sensor board for mica-family nodes. It has

a large number of analog sensors, including magnetometers, ac-
celerometers, a microphone, a temperature sensor and a light sen-
sor. The large number of sensors mean that two of the sensors – the
light and temperature sensors – share an ADC input channel. Each
sensor uses a separate GPIO pin to provide a source voltage: con-
trolling which sensor is sampled requires having only one of these
two pins active. The sensors require approximately 20ms to stabilize
after voltage is applied. We describe the photo (light) sensor driver
here; the temperature sensor implementation is essentially identical
except that it enables a different GPIO pin.

A photo sensor is a virtualized service that sits on top of the At-
mega128 ADC. A photo sample goes through three levels of arbi-
tration. The first is the lock on the photo driver: only one photo
client can sample at a time. The second is the lock on the shared
ADC channel, which ensures only one of the photo and temperature
drivers is active at any given time. Finally, the service must acquire
the ADC lock through the Lock interface of its ADC client. Once it
has all three locks, it can safely sample the sensor.

Figure 13 shows the component structure of the MTS300 photo
driver. When a client request a sample, the virtualizer requests the
lock from the photo arbiter. The arbiter’s power policy turns on the
photo driver with a split-phase call through a power manager. When
turned on, the photo driver requests the lock on the ADC channel
from the pin arbiter. When the pin arbiter grants the lock, the photo
driver powers up the photo pin and starts a 20ms timer. When the
timer fires, the driver indicates to the power manager that it is fully
started, the photo arbiter grants the lock to the client, and the client

10

Arbiter
SPI Client

I2C Client

I2C SPI

Power
ManagerMsp430Usart

L

AC

HC

D

P

Figure 14: Partial component architecture of the USART driver on
the MSP430 microcontroller. Different bus protocols (e.g., SPI and
I2C) share the pins. When a client is granted the USART resource,
the arbiter has automatically configured it for the proper protocol
and speed. An example UART client is not shown.

requests a sample. This request goes through the ADC virtualization
process described in Section 5.5.1.

5.5.3 MSP430 USART0
The MSP430 series microcontroller has two buses, USART0 and

USART1. USART0 can be configured to act as an SPI, I2C, or
UART. On sensor platforms such as telos and eyes, USART0 is
shared among a large number of peripherals. For example, on te-
los nodes, USART0 is used as an SPI bus for the radio and flash
chip and as an I2C bus for sensors. USART1 has similar but not
identical functionality.

Figure 14 shows the component structure of the USART stack.
Unlike most other hardware resources, the MSP430 USART driver
has multiple types of clients. Unlike the Atmega128 ADC stack,
which has client-defined configurations, the USART clients have
predefined configuration settings. While some USART peripherals
need to configure the bus (e.g., run at a slower speed), this is rare.

The USART clients are shared abstractions. Unlike the At-
mega128 ADC, which virtualizes ADC samples, many peripheral
drivers require performing a series of uninterrupted requests where
the bus is held between each operation. Therefore the SPI, UART,
and I2C clients export the Lock interface, providing users access to
the underlying lock on the bus. The configuration components mean
that when a client acquires the lock, the bus has already been auto-
matically configured for that protocol. Finally, if no client requires
the bus, it is powered down and its interrupts disabled.

5.5.4 Storage
Figure 15 shows the component structure of the LogRead and

BlockRead abstractions for the STM25P flash chip on the telos plat-
form. BlockRead provides read/write operations on fixed-size and
fixed-offset data units. Block storage is typically used for large data
that needs random access, such as code or data downloads. Log
storage is typically used for storing streams of sensor readings, and
provide an append-only abstraction.

Since NOR flash supports random access reads and writes, both
log and block storage are implemented on top of a “sector” ab-
straction of the underlying chip. Because log and block present
application-level units of reads and writes, they are virtualized ser-
vices. Each block or log client has an associated sector client that it
uses to read and write the chip. As the block and log drivers need
to perform multiple underlying reads and writes for an operation,
the sector interface is a shared abstraction. For example, when a
log client requests to write a record, the driver tries to acquire the
lock on the sector abstraction. When it acquires the lock, it writes a
record, releases the lock, and signals completion to the application.

Arbiter

BlockClient

BlockTranslate LogTranslate

LogClient

Power
Manager

SectorVirtualizer

SpiClient

L

D

L

P

Figure 15: Component architecture of the driver for the STM25P
NOR flash chip used by the telos platform. The arrowhead dis-
tinguishes the wirings of the log and block clients, which are both
clients of the underlying sector driver.

The power manager wires to the sector virtualizer rather than the
SPI client because power state changes on the STM25P require send-
ing commands to it. When the sector arbiter determines that there
are no active clients, it gives the lock to the power manager, which
tells the sector virtualizer to shut down the chip. The sector virtu-
alizer acquires the lock on the SPI with its SPI client and sends the
shutdown command to the STM25P.

6. RELATED WORK
ICEM borrows heavily from three large areas of prior work: con-

currency control, energy management, and I/O scheduling. Each of
these topics has made key observations which ICEM incorporates
into its design and structure.

6.1 Concurrency Control
Traditional concurrency control deals with threads and blocking

synchronization primitives such as locks, semaphores, barriers, and
monitors [17]. The fundamental assumption in much of this work
is that the underlying OS is itself threaded. In contrast, the event-
driven execution model typical to sensornet OSes has a single stack
and requires split-phase synchronization primitives. For example,
power locks grant a lock with a callback. Split-phase locks are not
themselves new – the EARTH parallel model introduced them for
use in SMP clusters [36] – but ICEM uses them in the low levels
of an OS rather than in high performance parallel computing. In
addition, TinyOS [16] contains several device-specific split-phase
concurrency control interfaces, such as BusArbitration, which
we took as a starting point in designing power locks.

As there is no inherent CPU parallelism, nonblocking optimistic
concurrency control algorithms [14] have limited utility. ICEM’s
shared drivers also differ from many traditional synchronization
primitives in that they export low-level locks to higher layers, pro-
viding explicit concurrency control across system boundaries.

As power locks protect hardware resources rather than memory
structures, they are generally not amenable to most traditional lock-
ing optimizations [27]. For example, given the cooperative schedul-
ing typical of sensornet OSes, spin locks are useless. Similarly, as
drivers rarely “read” hardware resources unless to modify their state,
read/write locks do not provide significant benefits.

6.2 Energy Management
As laptops have grown in popularity, so has interest in improv-

ing their lifetime through energy management. Prior work towards
this end has, for the most part, focused on individual devices, such as
disks [4, 13], memory [21], or the CPU [10, 6]. Venkatachalam et al.

11

provide a very good survey of current and proposed approaches [37].
The basic challenge these systems face is inferring future application
activity from prior requests. ICEM avoids this problem at low levels
of the OS by promoting a nonblocking model and, where serializa-
tion is unavoidable, allowing drivers to specify their needs through
power locks.

ECOSystem takes these approaches one step further, incorporat-
ing energy has a first-class resource in OS scheduling [42, 43]. In the
ECOSystem model, applications have units of energy called “cur-
rentcy,” which they spend as they use the CPU or peripherals. As
ECOSystem is intended for a multitasking system, one key ben-
efit currentcy provides is a common resource to enable fair-share
scheduling across multiple system devices. The ICEM and ECOSys-
tem approaches are completely complementary. ICEM operates at a
much lower level in the system, optimizing energy consumption for
whatever workload an application provides. An ECOSystem-like li-
brary layered on top of ICEM would allow solar-powered sensors
such as Heliomote [28] and Prometheus [18] to maintain application
quality of service as energy input changes.

Symbian OS [31], used in many mobile phones, has a very similar
approach to ECOSystem, except that it only accounts for energy use
and does not enforce a desired system lifetime. Like most other
embedded OSes, Symbian requires applications to explicitly control
device power states.

The Advanced Configuration and Power Interface (ACPI) [2] is
an open industry specification for operating system-directed power
management. ACPI’s logic requires dedicated peripheral hardware
support that the simple, low-power chips common to embedded sys-
tems do not have.

6.3 I/O Scheduling
Over the past 50 years, operating systems have refined concur-

rency as a way to improve I/O performance. With many concurrent
requests, disks can scan rather than seek [8], and network links can
remain busy although each open sock set has significant timeouts
and latencies [38]. In some cases, concurrency management goes
one step further, filling idle periods with prefetching to speculatively
improve future performance [9]. ICEM also uses concurrency to re-
duce system latencies, but for the purpose of reducing energy con-
sumption rather than increasing performance. However, reducing
system latencies and response times decreases how long a node has
to be on, thereby improving system longevity.

7. FUTURE WORK
Going forward, we see two important areas of future work for

ICEM. The first, as mentioned in Section 4.2, is compile-time analy-
sis for detecting possible deadlocks. We believe that a static analysis
using nesC interface contracts [3] will enable effective conservative
deadlock detection. Contracts allow the build system to associate
calls and completion callbacks, linking them together into a sequen-
tial series of operations. As T2 implements its tasks as interfaces,
this approach can be easily incorporated into the OS concurrency
model. This information allows the build system to generate a call-
graph of concurrent operations in which any circular lock depen-
dency indicates a possible deadlock.

The second area of future work is conditional I/O. This paper fo-
cuses on workloads that are independent of the data collected. Sen-
sornet applications, however, often want to send, sample, or store
depending on the data values generated: TinySQL [22] queries such
as SELECT light WHERE temp > 50 are a simple example.
In the current model, the application can either issue all of the I/O
calls in parallel and discard unwanted results or serialize its I/O calls
to prevent unnecessary I/O. The former wastes energy when the I/O

should not be issued, while the latter wastes energy when it should.
We are exploring how an application could provide information to
the OS to guide scheduling decisions. Mechanisms such as I/O can-
cellation could provide sufficient information in many cases. As
these workloads are inherently dependent on the environment, they
will likely benefit from on-line estimation and learning techniques.

8. CONCLUSION
ICEM is a device driver architecture for fully event driven oper-

ating systems typical of ultra-low power sensornets. ICEM enables
applications with no explicit energy management to operate within
1.6% of a hand-tuned optimal energy schedule. The key observation
behind ICEM is that the most useful information an application can
provide an OS for performing power management is the potential
concurrency of its I/O operations. Using ICEM, application level
concurrency allows the OS to save energy by efficiently schedul-
ing I/O operations. While ICEM’s effectiveness questions the as-
sumption that sensornet applications must be responsible for power
management, what interface the OS should provide to applications
remains an open question.

Acknowledgements
This work was supported by generous gifts from Intel Research, Do-
CoMo Capital, Foundation Capital, the National Science Founda-
tion under grants #0615308 (“CSR-EHS”) and #0627126 (“NeTS-
NOSS”), and a Stanford Terman Fellowship.

We would like to thank all members of the TinyOS Core Working
Group, as well as the TinyOS community at large, for the contri-
butions they made during the design process of this work. Special
thanks are due to Joe Polastre and Cory Sharpe of Moteiv Co., and
Jan Hauer from TU Berlin for the valuable insight and effort they
provided during the early stages of this project.

9. REFERENCES
[1] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng,

and R. Han. MANTIS: System Support for MultimodAl NeTworks of In-situ
Sensors. In 2nd ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), 2003.

[2] ACPI - Advanced configuration and power interface.
http://www.acpi.info.

[3] W. Archer, P. Levis, and J. Regehr. Interface contracts for tinyos. In Proceedings
of the 6th International Conference on Information Processing in Sensor
Networks (IPSN), 2007.

[4] F. Douglis, P. Krishnan, and B. N. Bershad. Adaptive disk spin-down policies for
mobile computers. In MLICS ’95: Proceedings of the 2nd Symposium on Mobile
and Location-Independent Computing, pages 121–137, Berkeley, CA, USA,
1995. USENIX Association.

[5] A. Dunkels, B. Grï£¡nvall, , and T. Voigt. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensors 2004 (IEEE EmNetS-I), Nov. 2004.

[6] K. Flautner and T. Mudge. Vertigo: automatic performance-setting for linux. In
OSDI ’02: Proceedings of the 5th symposium on Operating systems design and
implementation, pages 105–116, New York, NY, USA, 2002. ACM Press.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’03),
June 2003.

[8] R. Geist and S. Daniel. A continuum of disk scheduling algorithms. ACM Trans.
Comput. Syst., 5(1):77–92, 1987.

[9] R. A. Golding, P. B. II, C. Staelin, T. Sullivan, and J. Wilkes. Idleness is not
sloth. In USENIX Winter, pages 201–212, 1995.

[10] K. Govil, E. Chan, and H. Wasserman. Comparing algorithm for dynamic
speed-setting of a low-power cpu. In MobiCom ’95: Proceedings of the 1st
annual international conference on Mobile computing and networking, pages
13–25, New York, NY, USA, 1995. ACM Press.

[11] D. Grunwald, P. Levis, C. Morrey, M. Neufeld, and K. Farkas. Policies for
dynamic clock scheduling. In Proceedings of the 4th Symposium on Operating
Systems Design and Implementation (OSDI), 2000.

12

http://www.acpi.info

[12] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. A dynamic
operating system for sensor nodes. In MobiSYS ’05: Proceedings of the 3rd
international conference on Mobile systems, applications, and services, 2005.

[13] D. P. Helmbold, D. D. E. Long, and B. Sherrod. A dynamic disk spin-down
technique for mobile computing. In MobiCom ’96: Proceedings of the 2nd
annual international conference on Mobile computing and networking, pages
130–142, New York, NY, USA, 1996. ACM Press.

[14] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Dynamic-sized lock-free data
structures. In PODC ’02: Proceedings of the twenty-first annual symposium on
Principles of distributed computing, pages 131–131, New York, NY, USA, 2002.
ACM Press.

[15] J. Hill and D. E. Culler. Mica: a wireless platform for deeply embedded
networks. IEEE Micro, 22(6):12–24, nov/dec 2002.

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System
Architecture Directions for Networked Sensors. In Architectural Support for
Programming Languages and Operating Systems, pages 93–104, 2000. TinyOS
is available at http://webs.cs.berkeley.edu.

[17] C. A. R. Hoare. Monitors: an operating system structuring concept. Commun.
ACM, 17(10):549–557, 1974.

[18] X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally powered sensor
networks. In IPSN ’05: Proceedings of the 4th international symposium on
Information processing in sensor networks, page 65, Piscataway, NJ, USA, 2005.
IEEE Press.

[19] K. Klues, V. Handziski, J.-H. Hauer, and P. Levis. TEP 115: Power Management
of Non-Virtualised Devices.
http://www.tinyos.net/tinyos-2.x/doc/txt/tep115.txt,
2007.

[20] K. Klues, P. Levis, D. Gay, D. Culler, and V. Handziski. TEP 108: Resource
Arbitration.
http://www.tinyos.net/tinyos-2.x/doc/txt/tep108.txt,
2007.

[21] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page allocation. In
ASPLOS-IX: Proceedings of the ninth international conference on Architectural
support for programming languages and operating systems, pages 105–116, New
York, NY, USA, 2000. ACM Press.

[22] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: a Tiny
AGgregation Service for Ad-Hoc Sensor Networks. In Proceedings of the ACM
Symposium on Operating System Design and Implementation (OSDI), Dec. 2002.

[23] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy. Ultra-low power data
storage for sensor networks. In IPSN ’06: Proceedings of the fifth international
conference on Information processing in sensor networks, pages 374–381, New
York, NY, USA, 2006. ACM Press.

[24] A. Milenkovic, M. Milenkovic, E. Jovanov, D. Hite, and D. Raskovic. An
environment for runtime power monitoring of wireless sensor network platforms.
In Proceedings of the 37th IEEE Southeastern Symposium on System Theory
(SSST’05), 2005.

[25] J. Polastre, J. Hill, and D. Culler. Versatile low power media access for wireless
sensor networks. In Proceedings of the Second ACM Conferences on Embedded
Networked Sensor Systems (SenSys), 2004.

[26] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wireless
research. In IPSN ’05: Proceedings of the 4th international symposium on
Information processing in sensor networks, page 48, Piscataway, NJ, USA, 2005.
IEEE Press.

[27] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks.
SunOS multi-thread architecture. In Proceedings of theWinter 1991 USENIX
Technical Conference and Exhibition, pages 65–80, Dallas, TX, USA, 1991.

[28] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava. Design
considerations for solar energy harvesting wireless embedded systems. In IPSN
’05: Proceedings of the 4th international symposium on Information processing
in sensor networks, page 64, Piscataway, NJ, USA, 2005. IEEE Press.

[29] Red Hat, Inc. eCos v2.0 Embedded Operating System.
http://sources.redhat.com/ecos.

[30] SourceForge. TinyOS CVS Repository.
http://sourceforge.net/cvs/?group_id=28656.

[31] Symbian. Symbian OS - the mobile operating system.
http://www.symbian.com/.

[32] R. Szewczyk, P. Levis, M. Turon, L. Nachman, P. Buonadonna, and
V. Handziski. TEP 112: Microcontroller Power Management.
http://www.tinyos.net/tinyos-2.x/doc/txt/tep112.txt,
2007.

[33] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. An analysis of a large
scale habitat monitoring application. In Proceedings of the Second ACM
Conference on Embedded Networked Sensor Systems (SenSys 2004), 2004.

[34] TinyOS Alliance. TinyOS Community Forum: An open-source OS for the
networked sensor regime. http://www.tinyos.net.

[35] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A macroscope in the
redwoods. In Proceedings of the Third ACM Conference on Embedded
Networked Sensor Systems (SenSys 2005), Nov. 2005.

[36] G. Tremblay, C. J. Morrone, J. N. Amaral, and G. R. Gao. Implementation of the

earth programming model on smp clusters: a multi-threaded language and
runtime system. Concurrency and Computation: Practice and Experience,
15(9):821–844, 2003.

[37] V. Venkatachalam and M. Franz. Power reduction techniques for microprocessor
systems. ACM Computing Surveys, 37(3):195–237, 2005.

[38] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer. Capriccio:
scalable threads for internet services. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages 268–281, New York,
NY, USA, 2003. ACM Press.

[39] A. Weissel, B. Beutel, and F. Bellosa. Cooperative i/o: a novel i/o semantics for
energy-aware applications. SIGOPS Oper. Syst. Rev., 36(SI):117–129, 2002.

[40] Wind River Systems, Inc. VxWorks 5.4 Datasheet. http:
//www.windriver.com/products/html/vxwks54_ds.html.

[41] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time cpu scheduling for
mobile multimedia systems. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (SOSP), pages 149–163, New York, NY, USA,
2003. ACM Press.

[42] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Ecosystem: managing energy
as a first class operating system resource. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for programming languages
and operating systems, pages 123–132, New York, NY, USA, 2002. ACM Press.

[43] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Currentcy: A unifying
abstraction for expressing energy. In Proceedings of the Usenix Annual Technical
Conference, June 2003.

APPENDIX
A. SOURCE CODE

ICEM has been implemented as a core component of TinyOS 2.0
(T2). Source code for the interfaces, MCU sleep logic, library com-
ponents, and example device drivers exist for versions 2.0.1 and be-
yond. This code can be downloaded from the TinyOS sourceforge
project [30] or from the TinyOS Alliance website [34].

Some of the components and interfaces have different names in
the source code than they do in this paper, due to historical rea-
sons and a desire for greater clarity. In the code, the Lock inter-
face is named Resource, the Arbiter Configure interface is named
ResourceConfigure, and the DefaultOwner interface is named Re-
sourceDefaultOwner. The implementation of the components shown
in Figures 12– 15 also have slightly different names than their im-
plementations.

The following directories contain all of the library components and
interfaces introduced in this paper:

• tinyos-2.x/tos/interfaces

• tinyos-2.x/tos/lib/power

• tinyos-2.x/tos/system

The four example drivers and the CC2420 stack shown in Figure 4
can be found in these directories:

• Atmega128 ADC: tos/chips/atm128/adc

• MTS300 Photo: tos/sensorboards/mts300

• MSP430 USART0: tos/chips/msp430/usart

• Storage: tos/chips/stm25p

• CC2420: tos/chips/cc2420

The CC2420 figure refers only to source code for the radio stack in
versions 2.0 and 2.0.1. More recently the stack has changed slightly
to better support low power listening.

Finally, technical documentation for the systems described in this
paper can be found in TinyOS Enhancement Proposals (TEPs). TEP
108 [20] describes power locks, TEP 112 [32] documents the MCU
sleep code, and TEP 115 [19] details power managers and their cor-
responding interfaces.

13

http://www.tinyos.net/tinyos-2.x/doc/txt/tep115.txt
http://www.tinyos.net/tinyos-2.x/doc/txt/tep108.txt
http://sources.redhat.com/ecos
http://sourceforge.net/cvs/?group_id=28656
http://www.symbian.com/
http://www.tinyos.net/tinyos-2.x/doc/txt/tep112.txt
http://www.tinyos.net
http://www.windriver.com/products/html/vxwks54_ds.html
http://www.windriver.com/products/html/vxwks54_ds.html

	Introduction
	Background
	Application
	Operating Systems
	Hardware
	Managing Energy

	ICEM Drivers
	Virtualized
	Dedicated
	Shared
	Example: CC2420 Stack

	Integrated Management
	Driver Energy Management
	Split-phase Power Locks
	Component Library
	Arbiters
	Power Managers
	Configurators

	Sleep Energy Management

	Evaluation
	Microbenchmarks: Telos Energy
	Microbenchmarks: Power Lock Library
	Application Performance
	Code Complexity
	Example Drivers
	Atmega128 ADC
	MTS300 Photo Sensor
	MSP430 USART0
	Storage

	Related Work
	Concurrency Control
	Energy Management
	I/O Scheduling

	Future Work
	Conclusion
	References
	Source Code

