
1

Kevin Klues, Vlado Handziski, Chenyang Lu, Adam Wolisz,
David Culler, David Gay, and Philip Levis

2

Overview

•  Concurrency Control:
  Concurrency of I/O operations alone, not of threads in general
  Synchronous vs. Asynchronous I/O

•  Energy Management:
  Power state of devices needed to perform I/O operations
  Determined by pending I/O requests using Asynchronous I/O

3

OS
Disk Driver

Overview

Physical Disk

read()

write()

setPowerState()

Application

read()
write()
read()
read()

•  Concurrency Control:
  Concurrency of I/O operations alone, not of threads in general
  Synchronous vs. Asynchronous I/O

•  Energy Management:
  Power state of devices needed to perform I/O operations
  Determined by pending I/O requests using Asynchronous I/O

4

Overview

The more workload information an
application can give the OS, the more energy it

can save when scheduling that workload

•  Concurrency Control:
  Concurrency of I/O operations alone, not of threads in general
  Synchronous vs. Asynchronous I/O

•  Energy Management:
  Power state of devices needed to perform I/O operations
  Determined by pending I/O requests using Asynchronous I/O

5

Outline

•  Background Information
•  Platform and Application
•  Driver architecture
•  Evaluation
•  Conclusion

6

Motivation

•  Difficult to manage energy in traditional OSs
 Hard to tell OS about future application workloads
 All logic pushed out to the application
 API extensions for hints?

7

Existing OS Approaches

•  Dynamic CPU Voltage Scaling
 Vertigo - Application workload classes
 Grace OS - Explicit realtime deadlines

•  Disk Spin Down
 Coop-IO - Application specified timeouts

8

Existing OS Approaches

Saving energy is a complex process

•  Dynamic CPU Voltage Scaling
 Vertigo - Application workload classes
 Grace OS - Explicit realtime deadlines

•  Disk Spin Down
 Coop-IO - Application specified timeouts

9

Existing OS Approaches

Saving energy is a complex process
A little application knowledge can help us alot

•  Dynamic CPU Voltage Scaling
 Vertigo - Application workload classes
 Grace OS - Explicit realtime deadlines

•  Disk Spin Down
 Coop-IO - Application specified timeouts

10

Sensor Networks

•  Domain in need of unique solution to this problem
 Harsh energy requirements
 Very small source of power (2AA batteries)
 Must run unattended from months to years

11

Sensor Networks

•  Domain in need of unique solution to this problem
 Harsh energy requirements
 Very small source of power (2AA batteries)
 Must run unattended from months to years

•  First generation sensornet OSes (TinyOS, Contiki, Mantis, ...)
 Push all energy management to the application
 Optimal energy savings at cost of application complexity

12

ICEM: Integrated Concurrency
and Energy Management

•  A device driver architecture that automatically manages energy
  Implemented in TinyOS 2.0 -- all drivers follow it
  Introduces Power Locks, split-phase locks with integrated energy

and configuration management
  Defines three classes of drivers: dedicated, shared, virtualized
  Provides a component library for building drivers

13

ICEM: Integrated Concurrency
and Energy Management

•  A device driver architecture that automatically manages energy
  Implemented in TinyOS 2.0 -- all drivers follow it
  Introduces Power Locks, split-phase locks with integrated energy

and configuration management
  Defines three classes of drivers: dedicated, shared, virtualized
  Provides a component library for building drivers

•  Advantages of using ICEM
  Energy efficient – At least 98.4% as hand-tuned implementation
  Reduces code complexity – 400 vs. 68 lines of code
  Enables natural decomposition of applications

14

Outline

•  Introduction and Motivation
•  Platform and Application
•  ICEM architecture
•  Evaluation
•  Conclusion

15

The Tmote Platform

•  Six major I/O devices
•  Possible Concurrency

  I2C, SPI, ADC
•  Energy Management

 Turn peripherals on only when needed
 Turn off otherwise

16

Representative Logging
Application

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash

Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

17

Representative Logging
Application

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash

Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

18

Representative Logging
Application

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash

Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

19

Representative Logging
Application

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash

Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

20

Representative Logging
Application

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash

Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

21

Representative Logging
Application

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash

Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

22

Representative Logging
Application

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash

Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

23

Representative Logging
Application

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash

Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

24

Representative Logging
Application

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash

Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

25

Code Complexity

Hand-Tuned Application

26

Code Complexity

Every 5 minutes: !
 Turn on SPI bus !
 Turn on flash chip !
 Turn on voltage reference !
 Turn on I2C bus!
 Log prior readings!
 Start humidity sample!
 Wait 5ms for log !
 Turn off flash chip !
 Turn off SPI bus !
 Wait 12ms for vref !
 Turn on ADC!
 Start total solar sample!
 Wait 2ms for total solar!
 Start photo active sample!
 Wait 2ms for photo active!
 Turn off ADC!
 Turn off voltage reference!
 Wait 34ms for humidity!
 Start temperature sample!
 Wait 220ms for temperature!
 Turn off I2C bus!

Hand-Tuned Application

27

Code Complexity

Every 5 minutes: !
 Turn on SPI bus !
 Turn on flash chip !
 Turn on voltage reference !
 Turn on I2C bus!
 Log prior readings!
 Start humidity sample!
 Wait 5ms for log !
 Turn off flash chip !
 Turn off SPI bus !
 Wait 12ms for vref !
 Turn on ADC!
 Start total solar sample!
 Wait 2ms for total solar!
 Start photo active sample!
 Wait 2ms for photo active!
 Turn off ADC!
 Turn off voltage reference!
 Wait 34ms for humidity!
 Start temperature sample!
 Wait 220ms for temperature!
 Turn off I2C bus!

Hand-Tuned Application

28

Code Complexity

Every 5 minutes: !
 Turn on SPI bus !
 Turn on flash chip !
 Turn on voltage reference !
 Turn on I2C bus!
 Log prior readings!
 Start humidity sample!
 Wait 5ms for log !
 Turn off flash chip !
 Turn off SPI bus !
 Wait 12ms for vref !
 Turn on ADC!
 Start total solar sample!
 Wait 2ms for total solar!
 Start photo active sample!
 Wait 2ms for photo active!
 Turn off ADC!
 Turn off voltage reference!
 Wait 34ms for humidity!
 Start temperature sample!
 Wait 220ms for temperature!
 Turn off I2C bus!

Hand-Tuned Application

29

Code Complexity

Every 5 minutes:!
 Log prior readings!
 sample humidity!
 sample total solar!
 sample photo active!
 sample temperature !

ICEM Application
Every 5 minutes: !
 Turn on SPI bus !
 Turn on flash chip !
 Turn on voltage reference !
 Turn on I2C bus!
 Log prior readings!
 Start humidity sample!
 Wait 5ms for log !
 Turn off flash chip !
 Turn off SPI bus !
 Wait 12ms for vref !
 Turn on ADC!
 Start total solar sample!
 Wait 2ms for total solar!
 Start photo active sample!
 Wait 2ms for photo active!
 Turn off ADC!
 Turn off voltage reference!
 Wait 34ms for humidity!
 Start temperature sample!
 Wait 220ms for temperature!
 Turn off I2C bus!

Hand-Tuned Application

30

Outline

•  Introduction and Motivation
•  Platform and Application
•  ICEM architecture
•  Evaluation
•  Conclusion

31

Split-Phase I/O Operations

•  Split-phase I/O operations
  Implemented within a single thread of control
  Application notified of I/O completion through direct upcall
  Driver given workload information before returning control
  Example: read() readDone()

Application

Driver

read() readDone()

I/O request I/O interrupt

void readDone(uint16_t val) {
 next_val = val;
 read();
}

32

ICEM Architecture

•  Defines three classes of drivers
  Virtualized – provide only functional interface
  Dedicated – provide functional and power interface
  Shared – provide functional and lock interface

33

Virtualized Device Drivers

•  Provide only a Functional interface
•  Assume multiple users
•  Implicit concurrency control through buffering requests
•  Implicit energy management based on pending requests
•  Implemented for higher-level services that can tolerate

longer latencies

Energy: Implicit
Concurrency: Implicit

Virtualized

34

Dedicated Device Drivers

•  Provide Functional and Power Control interfaces
•  Assume a single user
•  No concurrency control
•  Explicit energy management
•  Low-level hardware and bottom-level abstractions have a

dedicated driver

Energy: Implicit
Concurrency: None

Dedicated

35

Shared Device Drivers

•  Provide Functional and Lock interfaces
•  Assume multiple users
•  Explicit concurrency control through Lock request
•  Implicit energy management based on pending requests
•  Used by users with stringent timing requirements

Energy: Implicit
Concurrency: Explicit

Shared

36

ICEM Architecture

•  Defines three classes of drivers
 Virtualized – provide only functional interface
 Dedicated – provide functional and power interface
 Shared – provide functional and lock interface

•  Power Locks, split-phase locks with integrated energy and
configuration management

37

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

38

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

39

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

40

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

41

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

42

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

43

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

44

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

45

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

46

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

1

2

3

47

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

Lock -
-
-

48

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

-
-
-

49

Power Locks

Dedicated
Driver

Power Locks

Power
Control

HW-Specific
Configuration

Lock

Functional

-
-
-

50

ICEM Architecture

•  Defines three classes of drivers
 Virtualized – provide only functional interface
 Dedicated – provide functional and power interface
 Shared – provide functional and lock interface

•  Power Locks, split-phase locks with integrated energy and
configuration management

•  Component library
 Arbiters – manage I/O concurrency
 Configurators – setup device specific configurations
 Power Managers – provide automatic power management

51

Component Library

Lock

Power Locks

Power
Control

HW-Specific
Configuration

52

Component Library

Lock

Power
Control

HW-Specific
Configuration

Arbiter

Arbiter
Configure

Default
Owner

Configurator Power Manager

53

Component Library

Power
Control

HW-Specific
Configuration

Arbiter

Arbiter
Configure

Default
Owner

Configurator Power Manager

Lock

  Lock interface for concurrency control (FCFS, Round-Robin)
  ArbiterConfigure interface automatic hardware configuration
  DefaultOwner interface for automatic power management

54

Component Library

Power
Control

HW-Specific
Configuration

Arbiter

Arbiter
Configure

Default
Owner

Configurator Power Manager

Lock

  Lock interface for concurrency control (FCFS, Round-Robin)
  ArbiterConfigure interface automatic hardware configuration
  DefaultOwner interface for automatic power management

-
-
-

55

Component Library

Power
Control

HW-Specific
Configuration

Arbiter

Arbiter
Configure

Default
Owner

Configurator Power Manager

Lock

  Implement ArbiterConfigure interface
  Call hardware specific configuration from dedicated driver

56

Component Library

Power
Control

HW-Specific
Configuration

Arbiter

Arbiter
Configure

Default
Owner

Configurator Power Manager

Lock

  Implement DefaultOwner interface
  Power down device when device falls idle
  Power up device when new lock request comes in
  Currently provide Immediate and Deferred policies

57

Shared Driver Example

•  Msp430 USART (Serial Controller)
 Three modes of operation – SPI, I2C, UART

58

Shared Driver Example

Msp430 USART

•  Msp430 USART (Serial Controller)
 Three modes of operation – SPI, I2C, UART

Power
Control

Functional Configuration

59

Shared Driver Example

Arbiter

Immediate
Power Manager

SPI User

Msp430 USART

•  Msp430 USART (Serial Controller)
 Three modes of operation – SPI, I2C, UART

SPI
Configurator

Power
Control

Functional Configuration

Lock

60

Uart
Configurator

Shared Driver Example

•  Msp430 USART (Serial Controller)
 Three modes of operation – SPI, I2C, UART

Arbiter

Immediate
Power Manager

SPI User

Msp430 USART

SPI
Configurator

Uart User

I2C User I2C
Configurator

Power
Control

Functional Configuration

Lock

61

Virtualized Driver Example

•  Flash Storage

Arbiter

Immediate
Power Manager SPI User

Log User

Flash Driver

Log Virtualizer

 Lock

Power
Control

Functional

62

Virtualized Driver Example

•  Flash Storage

Arbiter

Immediate
Power Manager SPI User

Log User

Flash Driver

Log Virtualizer

 Lock

Power
Control

Functional

63

Virtualized Driver Example

•  Flash Storage

Arbiter

Immediate
Power Manager SPI User

Log User

Flash Driver

Log Virtualizer

 Lock

Power
Control

Functional

64

Virtualized Driver Example

•  Flash Storage

Arbiter

Immediate
Power Manager SPI User

Log User

Flash Driver

Log Virtualizer

 Lock

Power
Control

Functional

65

Virtualized Driver Example

•  Flash Storage

Arbiter

Immediate
Power Manager SPI User

Log User

Flash Driver

Log Virtualizer

 Lock

Power
Control

Functional

-
-
-

66

Virtualized Driver Example

•  Flash Storage

Arbiter

Immediate
Power Manager SPI User

Log User

Flash Driver

Log Virtualizer

 Lock

Power
Control

Functional

67

Virtualized Driver Example

•  Flash Storage

Arbiter

Immediate
Power Manager SPI User

Log User

Flash Driver

Log Virtualizer

 Lock

Power
Control

Block Virtualizer

Block User

68

Virtualized Driver Example

•  Flash Storage

Arbiter

Immediate
Power Manager SPI User

Flash Driver
 Lock

Power
Control

Log User

Log Virtualizer Block Virtualizer

Block User

69

Outline

•  Introduction and Motivation
•  Platform and Application
•  ICEM architecture
•  Evaluation
•  Conclusion

70

Applications

•  Hand Tuned – Most energy efficient
•  ICEM – All concurrent operations
•  Serial + – Optimal serial ordering
•  Serial - – Worst case serial ordering

Every 12 hours:!
 For all new entries:!
 Send current sample!
 Read next sample!

Flash
Consumer

Sensors Radio

Every 5 minutes:!
 Write prior samples!
 Sample photo active!
 Sample total solar!
 Sample temperature!
 Sample humidity!

Producer

71

Tmote Energy Consumption 

Average energy consumption for application operations

72

Tmote Energy Consumption 

Average energy consumption for application operations

73

Application Energy
Consumption

Application energy with 5 minute sampling interval and
one send batch every 12 hours

0

25

50

75

100

288 Samples 2 Sends

E
 (

m
A

s
) Hand Tuned

ICEM

Serial +

Serial -

74

Application Energy
Consumption

Application energy with 5 minute sampling interval and
one send batch every 12 hours

0

25

50

75

100

288 Samples 2 Sends

E
 (

m
A

s
) Hand Tuned

ICEM

Serial +

Serial -

75

Application Energy
Consumption

Application energy with 5 minute sampling interval and
one send batch every 12 hours

0

25

50

75

100

288 Samples 2 Sends

E
 (

m
A

s
) Hand Tuned

ICEM

Serial +

Serial -

76

Sampling Power Trace

Overhead of ICEM to Hand-Tuned Implementation
 = ADC Timeout + Power Lock Overheads

With 288 samples per day
 ≈ 2.9 mAs/day
 ≈ 1049 mAs/year

 Insignificant compared to total
 5.60% of total sampling energy
 0.03% of total application energy

77

Expected Node Lifetimes

78

Expected Node Lifetimes

79

Expected Node Lifetimes

80

Evaluation Conclusions

•  Conclusions about the OS
  Small RAM/ROM overhead
  Small computational overhead
  Efficiently manages energy when given enough

information
•  Conclusions for the developer

  Build drivers short power down timeouts
  Submit I/O requests in parallel

81

Conclusion

•  ICEM: Integrated Concurrency and Energy Management
  Device driver architecture for low power devices
  At least 98.4% as energy efficient as hand-tuned

implementation of representative application
  Simplifies application and driver development
  Questions the assumption that applications must be responsible

for all energy management and cannot have a standardized OS
with a simple API

82

Questions?

