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Abstract

We present novel approaches to managing three key re-
sources in an event-driven sensornet OS: memory, en-
ergy, and peripherals. We describe the factors that ne-
cessitate using these new approaches rather than existing
ones. A combination of static allocation and compile-
time virtualization isolates resources from one another,
while dynamic management provides the flexibility and
sharing needed to minimize worst-case overheads. We
evaluate the effectiveness and efficiency of these man-
agement policies in comparison to those of TinyOS 1.x,
SOS, MOS, and Contiki. We show that by making mem-
ory, energy, and peripherals first-class abstractions, an
OS can quickly, efficiently, and accurately adjust itself
to the lowest possible power state, enable high perfor-
mance applications when active, prevent memory cor-
ruption with little RAM overhead, and be flexible enough
to support a broad range of devices and uses.

1. INTRODUCTION

A sensor network application is a complex entity. A
typical application receives, processes, routes, and sends
packets, samples sensors, filters data, and logs data to
non-volatile memory all within a very short amount of
time. It runs multiple network protocols, such as collec-
tion, dissemination, aggregation and point-to-point, each
having their own unique timing, bandwidth, and buffer-
ing requirements. Some applications interleave their op-
erations coarsely, in order to minimize jitter between
them. Others interleave them finely, in order to minimize
response times.

All of this complexity must run using limited re-
sources and even more limited energy. A typical sen-
sor node consists of a simple 8-bit or 16-bit microcon-
troller, a low-power radio, a battery pack (typically AA
or lithium-ion), non-volatile storage, and sensors/actua-
tors. As limited as these resources are, energy budgets
require that a node spend most of its time asleep, leaving
resources idle 99% of the time. When a node is active,
though, it must use what it does have quickly and effi-
ciently, returning to sleep as quickly as possible.

Resource management therefore emerges as one of
the principal challenges of sensornet application devel-
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opment. In particular, sharing memory and peripheral
devices (the radio, timers, A/D converters, etc), and ef-
ficiently using the limited energy supply of a sensor net-
work node (“mote”) require complex interactions be-
tween many different parts of a system, each of which is
often written by a different developer. Because of its en-
ergy cost and application importance, networking dom-
inates the requirements placed on almost all resources
in the system. More efficient memory use allows larger
queues for more efficient bursts and fewer dropped pack-
ets; more efficient energy management allows the net-
work to be active more often or last longer; efficient pe-
ripheral management enables safe and fast interleaving,
reducing latency and awake periods through parallelism.

In this paper, we present a novel architecture for re-
source management in sensor network operating sys-
tems. The underlying principle in this architecture is
to fix the set of resources and their clients statically
(at compile-time), only allowing their states and cur-
rent owners to be managed dynamically (at run time).
For instance, our memory manager does not dynamically
allocate objects, but allows a fixed set of cooperating
clients to dynamically share a set of statically allocated
objects. Taking this approach is quite different from tra-
ditional systems in which the number of resources and
their clients can both change dynamically. The choice
to break from this traditional approach was not arbitrary,
and is fundamental to the constraints of low-power event-
driven sensor network systems.

Two significant differences between motes and tradi-
tional real-time or desktop architectures drive the need
for a new resource management architecture. First,
sensor network applications are characterised by bursty
event-driven execution, triggered by long- interval timers
or packet reception. This differs greatly from the peri-
odic workloads common to traditional real-time systems
or the CPU-intensive workloads of desktop machines.
Second, motes run on very different hardware. Their mi-
crocontrollers have multiple independent buses for pe-
ripheral communication, hide very little latency through
caches, draw 1-3mA when active, draw 1-2pA when in
deep sleep power state, and take microseconds to wake
up. In contrast, low-power microprocessors intended for



embedded devices, such as the ARM Cortex M3 [3]] or
Intel PXA27X [13]], are similar to desktop processors.
They have a single system bus that all peripheral devices
share, draw 10-100 times as much current, and take tens
or hundreds of milliseconds to wake up.

These constraints and requirements have led to a fun-
damental rethinking of how to design operating systems.
TinyOS, the first broadly used sensor network OS, de-
ferred resolving the tension between efficiency and sup-
porting diverse resource allocation requirements by tak-
ing an application-centric view. TinyOS provides only
basic mechanisms for resource management and energy
conservation, leaving it to application-specific code to in-
stitute the entire policy [8]. Every application has to
build largely from scratch, and has to resolve all of its
resource conflicts on its own. While pushing all of the
resource management complexity to the application level
may not get in the way, one purpose of an OS is to pro-
vide meaningful abstractions that make application pro-
gramming simpler without a significant sacrifice.

Later sensor network OSes have dealt with the
challenge of resource management by adopting long-
established architectures, for whom resource manage-
ment is a well understood problem. MOS, the Mantis
OS, uses lightweight threads, relying on blocking se-
mantics and pending requests [[1]]; SOS resembles a stan-
dard event-driven system, relying heavily on dynamic al-
location and dynamically registering callbacks [7]]; the
Contiki OS straddles both domains, wrapping a pure
event-driven execution in a thread- like abstraction (pro-
tothreads) [5]]. Each of these OSes have a different phi-
losophy and execution model underlying their abstrac-
tions. When a model does not have a ready answer to
all the unique challenges sensornets pose, however, the
answer is generally the same: leave it to the application.

The research contribution of this paper is its presen-
tation and evaluation of novel resource management ap-
proaches for memory, energy and peripheral devices in a
sensornet OS. These approaches combine static and dy-
namic techniques to achieve the robustness of static allo-
cation and the flexibility of dynamic management. Mem-
ory management uses pools of fixed size objects with-
out controlling their allocation point. The core schedul-
ing loop manages the microcontroller power state by ex-
amining which subcomponents (timers, buses, etc.) are
active while allowing subsystems to specify additional
requirements as necessary. Peripheral management is
based on split-phase lock system based on components
called arbiters that provide flexible policies, support au-
tomatic power management, and reconfigure hardware
when needed. We show that these abstractions are flex-
ible enough to be reused in many places throughout a
sensor network OS, simplify application development,
and are efficient enough to not prohibit high performance

Figure 1: A mote from the Redwoods deployment.

applications. Furthermore, together they automatically
minimize the power state of a node with little runtime
overhead.

Section [2] of this paper provides an overview of a re-
cent sensor network deployment whose experiences mo-
tivate our resource management architecture. Section
describes the requirements for managing memory, en-
ergy and peripheral devices in sensor networks, includ-
ing the approaches taken by current sensor network op-
erating systems (Contiki, MOS, SOS and TinyOS 1.x).
Sectionf]presents the details of our abstractions for man-
aging memory, energy, and peripheral devices, and sec-
tion 5] gives an example of how to build a non-trivial sys-
tem component using these abstractions. Section [6]eval-
uates the overhead associated with an implementation of
these abstractions, and section [/|concludes.

2. A SENSOR
MENT

In previous work [16]], a sensor network was deployed
to monitor the microclimate of a redwood tree forest in
Marin County, California. The deployment consisted of
mica2dot motes, powered by a 3V, 1000mAbh battery, and
a suite of climate-monitoring sensors: temperature, hu-
midity, and incident and radiated light (in both full spec-
trum and photosynthetically active wavelengths). They
used an Atmel ATmegal28 microcontroller with 128 kB
of program flash and 4 kB of RAM running at 4 MHz,
a 433 MHz radio from Chipcon (CC1000) operating at
40Kbps, and 512KB of flash memory. Figure (1| shows a
photo of one of the deployed motes inside of its water-
tight packaging.

The motes were deployed in two redwood trees for a
period of 6 weeks, and set to collect one reading from
four of its sensors every 5 minutes. These sensor read-
ings were logged to the data flash, and sent over a multi-
hop mote network to a larger battery-and-solar-powered
base station (a PC-class device) which stored received
readings in a database and transmitted them over a GPRS
modem. This deployment placed significant demands on
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memory for storing and forwarding messages in the mul-
tihop network, on peripherals for taking sensor readings,
logging data to flash and sending messages, and on en-
ergy for enabling the deployment to run for the entire 6
week period (the included battery was capable of power-
ing the mote for approximately two days at full power).

The approach used to manage each of these resources
was mostly ad-hoc. The mote software used in this de-
ployment (TinyDB [8]]) included its own memory allo-
cator to dynamically allocate space for data collection
queries, while networking queues were statically allo-
cated using a fixed-size array. Ad-hoc code within each
peripheral’s drivers managed shared hardware resources
when necessary. The application manually powered sen-
sors on and off before each use. The radio had fixed duty
cycle (switch on for 4s every sampling period), and time
synchronization coordinated these wakeup periods. The
microcontroller switched to a sleep mode based on ex-
amining its internal state, waking up mostly to handle
timer and radio-related interrupts.

Revisiting this deployment in the light of our later ex-
perience, we can make a few interesting observations.
First, the ad-hoc policies used to manage energy and pe-
ripherals (but not memory) in this deployment were the
cause of several major problems. The deployment was
100 nodes, but only 33 collected useful data for a reason-
able portion of the experiment. The remaining 67 died
early in the experiment as they spent a large amount of
energy unsucessfully trying to synchronize. The Also,
during testing, we had problems using the full spectrum
and photosynthetically-active-wavelength sensors shared
microcontroller pins and this contention was the source
of many bugs in development. The deployment avoided
this problem by not using the full spectrum light sensor,
which was unnecessary for the scientific goals.

Second, some of the ad-hoc approaches used here
evolved into our current resource management abstrac-
tions: our current scheme for computing the microcon-
troller power state (Section [4.2)) is similar to that in this
deployment; our arbiters for resource management (Sec-
tion are influenced by ideas proposed in the arbitra-
tion scheme between the light sensors.

3. RESOURCES

To meet the challenges inherent to embedded sensor
network design, a number of different operating systems
have recently emerged that each take their own approach
to resolving the conflict between energy efficiency, ro-
bustness, and ease of programming. Many of the fea-
tures present in these systems have been developed using
well known operating system techniques, while others
are completely novel in design. Each system has been
designed to provide a certain set of features, at the cost
of sacrificing others. Fundamentally, however, each of

these systems needs to provide provisions for efficiently
managing memory, energy, and access to peripheral de-
vices.

In this section, we present the requirements for man-
aging these resources in a sensor network setting, and
compare how the TinyOS, SOS, MantisOS, and Contiki
operating systems manage each of these resources. In
Section 4 we point out some of the problems that arise
with using the approaches taken by each of these sys-
tems, and suggest ways in which they can be improved
up. Our comparison is based on using MantisOS 0.95,
SOS 1.7, Contiki 0.9.3 and TinyOS 1.15 with telosb [[12]
motes.

3.1 Design Considerations

By providing the proper abstractions, an operating sys-
tem can greatly simplify application development. There
is an inevitable tension between simplicity, generality,
and efficiency: while file descriptors are a good enough
abstraction for most applications, DBMSes manage disks
themselves. One of the advantages sensornet OSes have
today is that they are still very small. Users can reason-
ably easily replace almost any part of the system if it is
insufficient for their needs. While allowing users to re-
place subsystems is valuable, the better the design, the
less users need to.

Good system abstractions have three basic properties.
First, they are flexible enough to be used in many dif-
ferent circumstances. The more flexible the abstractions,
the fewer there need to be. Rather than force users to
learn a large number of separate approaches, a few key
principles can be used and reused many times. To con-
tinue to use the example of UNIX file, file descriptors
are flexible enough to represent not only files but also
sockets, pipes, devices, and system data (/proc). Second,
good abstractions simplify application programming by
providing needed functionality while hiding unnecessary
complexities and details. For example, UNIX files al-
low applications to read and write data without having
to worry about disk layout or data consistency. Finally,
good abstractions are efficient. While simple and flexi-
ble abstractions are sometimes by themselves sufficient,
these benefits are weighed against the cost in terms of
lost performance.

3.2 Memory

Managing memory, refers to two separate concerns.
The first is the allocation of physical memory into
software-usable memory objects (allocation); the second
is how memory objects are made available to and man-
aged by software (management).

There are two basic approaches to allocating and man-
aging memory. Traditionally, statically allocated mem-
ory has been managed statically, and dynamically allo-



cated memory has been managed dynamically. Static
allocation refers to the process of setting aside certain
blocks of memory at compile-time for use as a single
object type during the duration of a running program.
With static management of this memory, the ownership
of each block is predetermined at compile time, and can
never change. Dynamic allocation and management, on
the other hand, allow memory blocks to be reused by
many different components for storing different types of
objects depending on the current demands of a running
application.

Statically allocating and managing memory offers cer-
tain advantages over dynamic memory allocation and
management. First, it provides a weak form of type
checking, reducing memory access errors and ensuring
more robust program execution. Second, it is simple and
efficient. Statically managed memory never has to be
allocated or freed during program execution, and will al-
ways be available for use when required. Dynamic mem-
ory allocation and management, on the other hand, can
be much more flexible, at the cost of occasional access
errors and the overhead associated with allocating and
freeing memory. The size of a message queue, for ex-
ample, can be allowed to grow and shrink dynamically
depending on network traffic, thus freeing up memory
for use by the rest of the system. The choice of which
memory allocation and management scheme is most ap-
propriate for a given situation depends on the level of
flexibility, simplicity, and efficiency that is required.

TinyOS follows a purely static memory allocation and
management scheme, while MantisOS, SOS, and Contiki
all use some form of dynamic allocation and manage-
ment somewhere. Every component in TinyOS allocates
the memory it needs at compile time and passing pointers
between these components is strongly discouraged. It is
possible, however, for one of these components to stati-
cally allocate a block of memory and then choose to dy-
namically manage that block itself if desired (TinyAlloc
as part of TinyDB). MantisOS allocates all of its memory
statically, with the exception of threads, the networking
stack, and a dynamically managed tree library. SOS uses
dynamic memory heavily. A kernel is used to dynami-
cally load and unload modules from the system, each of
which require their own memory space to be dynamically
allocated at load time. Each of these modules can then
in turn dynamically allocate memory as needed. Contiki
takes a middle ground approach. Its modules use static
memory almost exclusively, but when loading a module,
must dynamically allocate space for each of its modules
variables.

The different approaches taken by each OS for man-
aging memory can be problematic in some cases. Since
TinyOS is designed to be a purely static operating sys-
tem, creating a component that essentially works around

this restriction is bound to cause problems. Memory ac-
cess errors are much more frequent, and the system as
a whole is less robust. For the rest of the OSs, most
of their problems arise in the way their memory alloca-
tors have been implemented. In MantisOS, the standard
compacting allocator it uses requires 6 bytes of overhead
on each allocated memory block. While this overhead
may not be too significant when blocks are allocated in
large chunks (communication buffers - 64B and thread
stacks 64-1024B), it can be overwhelming when they are
allocated in smaller chunks (tree nodes - 8B). SOS has
several different allocators, but the one used most often
is a standard first-fit defragmenting allocator. Blocks of
memory are allocated in chunks of 8-16 bytes, each con-
taining a three byte header. As we will see in section
[6] the way in which this memory allocator has been im-
plemented is extremely inefficient and can result in long
latency operations. The Contiki memory allocator is ex-
tremely streamlined and performs quite well under most
circumstances. It is a best-fit-freelist allocator that allo-
cated a new chunk of memory only when the freelist is
empty checking if the new chunk will overlap with the
stack. As with all dynamic memory allocation schemes,
however, it does have some overhead in terms of perfor-
mance and header sizes.

3.3 Energy

We base our definition of managing energy on a dis-
tinction between chips, hardware devices with a physi-
cal power state, and peripheral devices, logical units of
functionality. A chip consists of one or more peripheral
devices, each of which have their own power states that
contribute to the overall power state of the chip itself.
The microcontrollers used on motes typically have mul-
tiple peripheral devices (e.g., ADC, USART, Reference
Voltage Generator) and external chips typically have one
(e.g. Flash, Radio). Managing energy on a mote is the
task of determining the lowest possible power state for
all chips at any given time, given the power state of all
peripherals.

In classical operating systems, peripheral devices can
be fairly complex, with multiple power states and rel-
atively complex APIs for power management. For ex-
ample, the 500-page-long ACPI standard [2] specifies
four different device power states: DO — device active;
D1, D2 - intermediary power states and D3 — device off.
However, most peripherals used on motes have only two
meaningful power consumption states: on and off. Con-
sequently, external chip power management is generally
straightforward: a request to switch the chip’s peripheral
device on or off simply switches the chip itself on or off.

For microcontrollers, there are two sets of power states
to consider: the active power state — this typically de-
pends on clock rate and supply voltage — and the sleep



power state — this typically depends on which of the mi-
crocontroller’s peripheral devices are currently switched
on or off. Current sensor network OSes only adjust the
sleep power state, for two reasons. First, it is the most
important, as motes spend most of their time asleep. Sec-
ond, many current motes do not allow the active power
state to be changed at runtime, unlike recent desktop and
mobile processors.

TinyOS and MantisOS both provide standard inter-
faces to controlling the power to peripherals. TinyOS
provides a reusable interface with start and stop
commands, while MantisOS drivers that wants to be
power managed, must implement a dev_mode() function
that can be called to modify the power state of the under-
lying peripheral. Three distinct device power states are
supported: on, off and idle.

SOS and Contiki do not provide any standard mech-
anisms for managing the power state of peripheral de-
vices. Some peripherals implement on and off func-
tions (e.g., the CC1000 on SOS); others do not (e.g., the
CC2420 in Contiki, but not SOS).

Microcontroller power management, on the other hand
is a bit more involved. Contiki and TinyOS are event-
driven operating systems, so when the event/task queue
is empty (and no interrupts are pending), the microcon-
troller can be put in to some sleep mode. Currently,
Contiki always places the telosb’s msp430f1611 [[10] mi-
crocontroller in low-power-mode 1, where power con-
sumption is approximately 75uA. This microcontroller
has lower power modes using respectively 17, 2.0 and
0.2uA, with progressively more functionality disabled.
In TinyOS, selection of an appropriate sleep mode
(which must be enabled by the application programmer)
is computed using a chip-specific function that typically
examines its internal registers to determine which periph-
erals are being used at the current time. On the telosb
mote platform this function chooses between the 2uA
low-power-mode, the 751:A mode and no low-power op-
eration based on the activities being performed by its US-
ART, ADC and Timer peripherals.

The microcontroller power management in MantisOS
is tightly coupled with the thread scheduling and sup-
ports two levels of power saving. When the scheduler
ready queue is empty (because all threads are blocked on
I/O, for example), the scheduler implicitly puts the mi-
crocontroller into an idle state that consumes less power
than the active state, but still supports full peripheral
functionality. For larger power savings, the scheduler
needs explicit information from the threads in order to
determine when it is safe for the microcontroller to go
into a sleep state. The signaling is performed by a
mos_thread_sleep() function (similar to the UNIX sleep()
call) that threads can use to declare the intended duration
of sleep. When all threads in the system are sleeping, the

scheduler is free to put the microcontroller into a deeper
power-saving state, with only a single timer left running
to wake the threads up after the sleeping period is over.
When SOS puts the CPU into a low power state, it
places it into the highest power state that allows all pe-
ripheral devices to operate correctly; in some cases (the
OKI ARM microcontroller) this is a simply busy loop.

3.4 Peripheral Devices

Managing peripheral devices has two parts. The first
is providing shared access to devices requiring dedicated
use between multiple clients. The second is switching
peripheral devices off whenever possible, consistent with
the needs of the device’s clients.

Access to these devices can be provided using either
shared or virtualized services. A shared service gives
clients full access to the peripheral at the cost of some
form of access control. Virtualisation gives each client
its own (possibly simplified) “copy” of the peripheral, at
the cost of some runtime or latency overhead.

TinyOS includes one significant virtualized service,
the timer. This service is implemented using ad-hoc code
that does not follow a very precise structure or imple-
ment any specific set of well-defined interfaces. For non-
shared services, the usual approach to resolving sharing
conflicts is to have the command that requests an oper-
ation return an error code when the service is already
busy. It is then left up to the client to retry the operation
at a later time, based, e.g., on waiting for the service’s
completion event (i.e., waiting for the currently-being-
processed command to complete). In the presence of
more than two clients for a service, there is no way to
guarantee fairness.

Only one platform in TinyOS attempts to provide any
sort of peripheral device management. On the Telos plat-
form, the bus shared between the radio and storage sub-
systems has mechanisms to prevent conflicts, but only
once the system boots. Applications must manually in-
terleave the initialization of these subsystems or one of
them will inevitably fail. Beyond these two examples,
TinyOS does not provide any peripheral management
mechanisms.

SOS does not provide mechanisms for controlling ac-
cess to shared resources. It requires that all peripheral
device management be handled at the application level,
without explicit support for interleaving operations of
any type.

The driver architecture in MantisOS closely follows
the POSIX model with all interaction between the users
and the driver layer constrained to only four system calls:
dev_read() and dev_write() for reading and writing data,
dev_ioctl() for passing device specific configuration in-
formation and dev_mode() for explicit device power state
control (Section 3.3).



For coordination of simultaneous access, a traditional
mutual exclusion approach is used. Each driver main-
tains a simple “mutex” When the peripheral is locked for
exclusive access, any other calling thread is queued in
an associated waiting queue and blocked pending the re-
lease of the mutex lock by the current owner.

Peripherals are typically accessed in Contiki by calling
a particular set of C functions to directly communicate
with hardware (e.g., the telosb flash chip, serial port sup-
port). In some cases, these functions also communicate
with a protothread (Contiki’s lightweight, thread-like ab-
straction for event-based systems [[6]) that implements
part of the peripheral’s functionality (e.g., the CC2420
radio). Events are signalled by peripherals either by call-
ing a particular function from within an interrupt handler,
or by signalling an event to a specific protothread.

There is no general-purpose support for implementing
either shared or virtualized services (there is a prototype
semaphore implementation, but it is not currently used
anywhere). Some peripherals provide ad-hoc virtuali-
sation (e.g., timers). Others deal with sharing through
various mechanisms: providing only blocking functions
(e.g., flash,! serial port), synchronization via global vari-
ables (e.g., the CC2420 radio and access to the I12C bus
- these share resources on the telosb) and buffering (the
TCP/IP networking).

4. DYNAMIC MANAGEMENT IN A
STATIC OS

This section presents our novel abstractions for per-
forming memory, energy and peripheral device manage-
ment in a static sensornet OS. We have based the design
of these abstractions on our experience with previous
sensor network deployments and on the problems associ-
ated with the approaches taken by other sensor network
operating systems. These designs have been made as part
of the development of T2 [9], a successor to the original
TinyOS operating system, and references are made to it
where appropriate in order to clarify design decisions and
give examples of how these abstractions can be used.

4.1 Memory

The static allocation approach, exemplified by
TinyOS, greatly simplifies memory management. How-
ever, it is very limiting and can lead to inefficient al-
location. Systems that require greater flexibility, such
as the TinyDB database engine, end up implementing
their own dynamic memory manager. Dynamic mem-
ory allocation has the benefits of more efficient use in
lightly loaded systems and a graceful degradation model
in heavily loaded systems. However, it also has all of the

"This could be a problem, given that erasing a flash block can
take 2s on the telosb’s ST M25P flash chip.
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Figure 2: The memory pool abstraction. A pool allo-
cates a static number n of objects at compile time (top
figure) and dynamically manages n such objects at run
time (bottom figure). Because every memory object in

the system is statically allocated, the objects it holds may
have been allocated elsewhere.

traditional drawbacks, such as out-of-bounds accesses
and inadequate error checking. As these bugs effectively
occur within kernel code (there is no user code), they can
easily crash an entire node. The danger and difficulty of
these kinds of failures have led the SOS operating sys-
tem to introduce a software fault isolation system [/15]],
which can introduce up to a 400% overhead on memory
accesses; in contrast, a survey of the code base of the
TinyOS operating system found a single memory access
bug in tens of thousands of lines of code [[14].

Our memory managers follow an approach interme-
diate between fully static and fully dynamic allocation:
all objects are allocated statically, reside at a fixed ad-
dress, and keep the same type. These objects, however,
can be dynamically managed and shared between ser-
vices and systems. As memory objects are of known
size, overrun and underrun errors are rare. As objects
keep the same type for the life of the program (even when
“freed”), dangling pointers cannot cause memory errors
(though may of course still cause application or service
level bugs). This approach is similar to that of the SAFE-
Code project. [4]

Figure [2] shows an example memory abstraction, the
pool. A pool allocates N elements of a type t at compile
time. Programs can allocate elements from and place el-
ements into the pool. However, elements placed into the
pool do not need to have orginated from within it. A
pool nanages 0 to N elements of type t, and these ele-
ments could have been allocated anywhere in the address
space. When the system boots, they happen to be the N
elements the pool allocated. As the system executes, any
memory object of the proper type can be placed into and
allocated from the pool.

Buffer swapping is one way that objects allocated else-
where make their way into the pool. Buffer swapping is
a simple and commonly used technique to prevent mem-
ory starvation. When offered a memory object to use, a
software module must return another object of the same
type. This object may be the same one that was passed to
it. Following this approach means that a component can-
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Figure 3: Buffer swapping example of how memory ob-
jects move in and out of a pool. A buffer originally allo-
cated in the radio stack makes its way into the pool when
a routing layer receives a packet to forward.

not acquire all of the memory in the system, as every ex-
change is tit-for-tat. Figure 3] shows this behavior. Con-
sider, for example, a networking stack. When the stack
receives a packet, it passes a packet memory object to a
higher layer, which must return a packet to the stack so
that the system can continue to receive packets. In order
to return a packet, however, the higher layer might allo-
cate one from a packet pool. As the stack passes packets
to many higher layers, an object originally allocated by
the pool may make its way into a completely different
part of the system. Eventually, the higher layer frees the
packet object it received from the stack into the pool.

4.2 Energy

Peripherals typically provide control over their power
state by providing a standard interface which has start
and st op commands. For peripherals on external chips,
the implementation of these interfaces is straightforward.

Computing the power state of the microcontroller is
significantly more complex. T2 puts the microcontroller
into one of its low power sleep states whenever its task
queue is empty and no interrupts are pending. The goal
of T2’s energy management system is to efficiently pick
the best possible sleep state, based on the following in-
formation:

e The processor’s hierarchy of power states. Each
state typically has a set of onboard peripherals that
are disabled, and an associated wakeup time (typi-
cally longer for lower-power states). We currently
assume that power states can be ordered such that
lower power states disable strictly more peripherals
(as is typical), though our framework could easily
be extended to handle more complex scenarios.

e The currenly active on-chip peripherals. The state
of these peripherals is generally checkable by in-
specting an MCU’s many control registers.

e Any application or system requirements on power
state and wakeup time. For instance, if a timer is
scheduled to happen in 1ms, then a sleep state with
a 10ms wakeup time is inappropriate.

These goals are achieved in T2 by a combination of
three mechanisms:

e A platform-specific function (mcuPowerState) that
computes the best sleep state based on which pe-
ripherals are enabled.

e An (optional) dirtyMcuState bit which must be set
by any code that affects state checked by mcuPow-
erState. This avoids having to recompute mcuPow-
erState every time sleep mode is entered.

e Hooks by other parts of the system or application re-
questing (at least) a particular sleep state. These are
necessary to handle any peripheral state not check-
able (or checked, see below) by the mcuPowerState
function, e.g., time-varying state like the time to the
next timer event.

In C-like pseudocode, T2’s sleep logic thus looks like:

sleep_state_t currentSleepState;
bool dirtyMcuState;

void enterSleep (void) {
disable_interrupts();
if (dirtyMcuState) {
dirtyMcuState = FALSE;
currentSleepState = mcuPowerState();
}
setSleepState (MAX (currentSleepState, sleepHook()));
atomically_enable_interrupts_and_sleep();

}

Much of the details of this sleep logic are necessar-
ily platform (rather than just MCU) specific. For in-
stance, the mica family motes choose to enter ’power
save” mode, which disables some hardware clocks, even
when those clocks are running. In effect, that means that
those clocks are only measuring non-sleep time. With-
out this choice, these motes would never enter low-power
sleep modes. Mica family motes also contain a hook that
checks the delay until the next timer interrupt. If this de-
lay is below 12ms, the mote enters “extended standby”
rather than “power save”. “Extended standby” wakes
up from sleep in 6 cycles rather than 65536 for ’power
save”. However, this distinction is only necessary be-
cause mica motes use an external crystal; when using an
internal oscillator, wakeup from “power save” is also 6
cycles.

As a result of these and other similar considerations,
T2 has a standard MCU power management architec-
ture, but the implementations are necessarily heavily
platform-specific.



4.3 Peripherals

In T2, peripherals are accessed via either virtualised
or shared services. With the exception of timers, all vir-
tualised services are built upon an underlying shared ser-
vice with access controlled by arbiters, a lock-like ab-
straction. The timer implementation is ad-hoc, so we
concentrate here on how arbiters support efficient shar-
ing and power management of peripherals.

Access to each shared service is controlled by an
arbiter, which offers a number of standard interfaces
to both the service and its clients.  These inter-
faces are: Resource which allows clients to re-
quest access to the service, ResourceRequested
which informs a client that another client is inter-
ested in the resource, ArbiterInfo that allows a
service to check that a client “owns” the arbiter, and
ResourceConfigure which simplifies management
of per-client service configuration. Additionally, arbiters
offer a ResourceController interface which allow
for automatic peripheral power management; this is dis-
cussed further below (Section [d.3.1).

Resource is the basic interface to an arbiter.
An arbiter has request, immediateRequest and
release commands to respectively request and release
access to a service. With immediateRequest access
is granted immediately if possible and denied otherwise,
while request puts the client on a queue and grants
requests in some arbiter-specific order.

Arbiters in T2 combine static and dynamic ap-
proaches. The set of clients of a service, and hence of its
arbiter, is fixed at compile-time. This allows the arbiter
to reserve space proportional to the number of clients,
and hence ensure that its queue never overflows (how-
ever, each client is only allowed one outstanding request
at any time; this can also be viewed as n 1-deep queues).
Our experience shows that it is much easier to write reli-
able code when one is guaranteed exactly one queue slot,
versus an unbounded put possible zero number of queue
slots. Finally, note that ensuring that clients do not fill up
the queue by making multiple requests does not prevent
a client from monopolizing a service by not releasing it
in a timely manner.

The decison about whether to use request or
immediateRequest depends on the client require-
ments. If a client is only interested in obtaining
a resource ’right now”, due to timing constraints
or the semantics of its protocol, then it should use
immediateRequest. Additionally, a client can
choose to use immediateRequest to reduce latency,
at the cost of a little extra code complexity to han-
dle immediate request failure (typically just a call to
request).

Sometimes it is useful for a client to be able to hold
onto a resource until someone else needs it and only at

that time decide to release it. The arbiter makes this in-
formation available via the ResourceRequested in-
terface, which signals an event to the client on every re-
quest.

A misbehaving client may fail to wait to be granted ac-
cess to a service before trying to using it. Service imple-
mentations may include runtime checks to detect this, by
using the ArbiterInfo interface. This allows a ser-
vice to check if an arbiter is currently granted to a client,
and compare that client’s identity to the one attempting
to use the service.

The ResourceConfigure interface is used by an
arbiter to automatically configure a resource for use
by its client before granting access to it. It is also
used to unconfigure a resource just after it has been re-
leased. A client specifies which hardware configuration
the ResourceConfigure interface should be associ-
ated with and the arbiter automatically handles the con-
figuration.

4.3.1 Peripheral Power Management

While the application programmer can simply explic-
itly power non-shared peripherals on or off, a safe con-
trol of the power state of shared peripherals is almost im-
possible without OS support, given the large number of
ongoing activities in highly dynamic sensor network ap-
plications.

Dynamic power management of shared peripherals
that have only two power states effectively requires
tracking their ownership? in order to detect when the pe-
ripheral is unused, and thus can be powered down.

In some traditional OSs, this information is centrally
available in the kernel’s “device queues” that list the
waiting processes blocked on I/O requests to/from a par-
ticular shared peripheral. In T2, this information is
tracked in a distributed fashion by each peripheral’s ar-
biter. Thus, instead of going with a centralized solution
where a system-level power management component ob-
serves peripheral status and issues power-state transi-
tion commands, we continue the decentralized approach
by introducing reusable PowerManager components that
are tightly coupled with the arbiter in order to provide
local and customizable power management.

These power management components connect to the
peripheral’s arbiter as illustrated in Figure 4 When the
peripheral is not being used by any of the normal clients,
the arbiter transfers the ownership of the peripheral to the
power manager via the ResourceController inter-
face. The power manager applies an appropriate power
management policy and automatically powers the pe-
ripheral on or off via its start and stop commands
that are part of the StdControl or SplitControl inter-

2As opposed to tracking full workload information for periph-
erals with multiple power/performance states.
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Figure 4: Component graph showing relationship be-
tween a resource, an arbiter, and its power manager

The optimal power management policy depends on the
application requirements as well as on the time and en-
ergy overhead for the power state transitions. Thanks to
the decentralized approach, the policy can be customized
on a peripheral by peripheral basis, allowing better con-
trol of the trade-offs. Currently, T2 has reference imple-
mentations for two power management policies: a simple
immediate policy and a deferred policy with fixed time-
outs.

Under the simple policy, the power manager immedi-
ately powers the peripheral down after receiving owner-
ship over the peripheral. The manager remains in own-
ership of the peripheral while it is powered down. Upon
receiving information from the arbiter that some client
wants to use the peripheral via the requested event of
the ResourceController interface, the power man-
ager powers up the peripheral before releasing it to the
arbiter so that it can be assigned to the requesting client.
This policy is optimal for the cases when the power state
transitions carry negligible delay and energy penalties.

When the state transitions carry significant delay and
energy overhead, the simple policy is no longer effective
and can cause more harm then good. To prevent frequent
state transitions, a simple mitigating technique is the in-
troduction of an idle state prediction timer that is started
when the power manager becomes the owner of the pe-
ripheral. In contrast to the simple policy, the power man-
ager will not force a transition to the off state until the
expiration of the timer. If a client requests the peripheral
while the timer is active, the power manager cancels it
and immediately releases the peripheral.

5. NETWORK STACK EXAMPLE

To demonstrate the simplicity and flexibility of our ab-
stractions, we provide an example of how they can be
used to build a simple networking stack. This networking
stack consists of a radio driver (using many smaller sub-
components), a routing component, and a message pool.

The radio driver statically allocates a single message
buffer for receiving incoming packets from the radio
hardware and a pointer to a second message buffer for

sending outgoing packets passed to it by the routing com-
ponent. The routing component statically allocates a
fixed sized queue of message buffers for storing pack-
ets that need to be forwarded, and an array of pointers
to messages contained in the message pool for swap-
ping with higher level components trying to send pack-
ets. 3. Messages are then exchanged between the radio,
the routing component and any upper level components
using the buffer swapping mechanism described in sec-
tion 4.1}

Along side all of the dynamics occurring at these
higher layers, the low level radio driver internally imple-
ments a Low-Power-Listening (LPL [11]]) sleep schedul-
ing protocol integrated with a CSMA based MAC. This
sleep scheduling protocol periodically wakes up the ra-
dio hardware in order to check if there is any activity on
the radio channel. If there is, it leaves the radio on in or-
der to receive a packet. If there is not, it turns the radio
off and waits until the next check period. Whenever the
radio has a packet to send it turns the radio on, checks to
see if the channel is busy and sends if it is not. If it is,
it continually waits some random amount of time (leav-
ing the radio on in order to receive whatever packet is
currently being sent on the channel) and then tries again
until it is successful. All packets are sent with a pream-
ble length equal to the check period in order to ensure
that other nodes will wake up before the packet itself is
actually sent.

Implementing this protocol can quickly become com-
plicated without the help of proper OS support. The radio
channel must be checked for activity by taking an RSSI
reading using an ADC. A timer must be used to run the
sleep schedule and random backoff timers for the radio.
Communication with the radio must be performed over
a USART component running an SPI protocol. By vir-
tualizing access to each of these services using the tech-
niques described in section the implementation of
the radio logic can be greatly simplified. The radio can
act as a client to the ADC, Timer, and SPI services, only
requiring each of their underlying resources to be active
when in use. All the radio has to do is express its wishes
to use one of these services, and the underlying software
takes care of the rest. Requests are put into arbiters, re-
sources are configured for proper use, and the microcon-
troller is put into its lowest possible power state when-
ever everything has gone idle. Furthermore, whenever
the radio has been put to sleep using LPL, its hold on the
SPI service can be released and the underlying USART
can be automatically powered off using one of the pe-
ripheral device power managers. Without this support, it
would be very difficult for the radio to ensure that it had

3 A single node may be running multiple networking stacks and
the message pool size must be large enough to accommodate
all of them



exclusive access to each of these components and that
each of them was powered down whenever they weren’t
being used.

6. EVALUATION

This section evaluates the proposed resource manage-
ment mechanisms outlined in Section[d] When appropri-
ate, we compare the mechanisms we have implemented
in T2 against the approaches taken in other existing sen-
sornet OSes like MOS, SOS and Contiki.

6.1 Memory Management

1000
B MOS
[ SOS

70 - B Contiki
] T2

500

Number of cycles

I T

Allocate Free

Figure 5: Cycle counts for allocating and freeing packet
buffers for the memory management systems of sensor-
net operating systems. As TinyOS has no dynamic allo-
cation, it is not present.

We evaluate the efficiency of different memory man-
agement approaches by considering a simple common
use case in sensornets, a packet queue. For each ap-
proach, we simulated a networking component with a
queue of up to 16 packets. Every 50ms, the component
randomly either allocates or frees a packet. If the queue
is empty, it always allocates, if it is full it always frees.
This causes the queue depth to be a random walk. We let
this program run for several hundred iterations. Packet
buffers were 44 bytes. Figure [5|shows the results.

6.2 Energy Management

Measuring the energy consumption on real mote hard-
ware is the only way to positively validate the proper
functioning of the energy management policies of a sen-
sor node OS. Because many of the management actions
(especially the ones controlling the MCU low-power
state) operate on fine time scales, the best insight can be
gained by capturing detailed current consumption pro-
files at fine resolutions.

In this subsection we present the results from a battery
of such current consumption tracing experiments that
demonstrate the proper operation of the energy manage-
ment policies presented in section and implemented

in T2. For reference, we have performed a correspond-
ing set of experiments on MOS also. We have selected
MOS because it is the only other sensor node OS that
has comparable energy management feature set (summa-
rized in section as T2, and because it allows us to
illustrate how the core OS assumptions (i.e. event-based
vs. thread-based approach) can influence the flexibility
and the performance of the energy management tasks.

The traces were collected using a standard low-side
current measurement setup, with the potential drop over
the small sense resistor amplified using an amplifier cir-
cuit before being sampled using a high-speed digitizer.
Because we wanted to test both the MCU and the periph-
eral energy management capabilities, we have selected a
telosB node populated with all on-board sensors as our
system under test.

6.2.1 MCU power state

Our first experiment (figure [6] shows the current
consumption levels of the standard T2 Null appli-
cation that does little more than basic boot time ini-
tialization of the mote. An existing policy in T2 re-
quires that the 32 kHz timer remains always active,
effectively making the “Low Power Mode 3 (LPM3)”
state of the MSP430F1611 the lowest power-saving
state safe on telosB. The default curve shows that the
McuPowerSleep function properly selects the opti-
mal sleeping state in this simple scenario without tasks.
For the other two curves (LPM1 and Active), we have
used the McuPowerOverride interface to demon-
strate how the application can override the default de-
cision of the MCU manager. The figure shows that when
the MCU is fully active, the mote consumes about 50
times more energy than when the MCU is in the default
power-saving LPM3 state.
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Figure 6: Current consumption of the Null application
in T2 under different application MCU power state over-
rides

In our the second experiment (figure [7), we have



recorded the consumption profile of a simple T2 appli-
cation that periodically posts two tasks. The first task is
re-posted every 250 ms and as workload busywaits on a
hardware clock for 50 ms. The second task is re-posted
every 100 ms and busywaits for 100 ms. The durations
and the periods were selected such that execution of the
two tasks lines up each 500 ms, interleaved by a single
execution of the shorter task.

The trace shows that even with multiple tasks active
in the system, the automatic power management in T2
safely puts the MCU in the optimal power saving state
whenever the task queue of the scheduler is empty and
properly wakes it up when a task is posted for execu-
tion. Thanks to the superb wake-up capabilities of the
MSP430F1611 microcontroller, the transitions are al-
most instantaneous (only a few us).
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Figure 7: Current consumption profile of a simple T2
application with two periodically posted tasks

To compare the operation of the MCU power state
management in T2 with the one in MOS, we have im-
plemented the equivalent MOS application using two
threads and recorded its profile (figure [8). The first
thread busywaits for 50 ms using mos_mdelay () and
then calls mos_thread_sleep () asking to sleep for
250 ms in an endless loop. The second thread does the
same, but with busywait period of 100 ms and sleep time
of 500 ms.

The obtained results show several interesting differ-
ences. First, the current consumption in the sleeping state
is significantly higher even from the active state in the T2
run. Looking at the MOS source code, it seems that all
pins and peripherals on the telosb mote are not properly
initialized into their lowest power consuming states dur-
ing the boot-up as in T2, results in significant base offset.
While the MOS scheduler properly switches the MCU
power state when both threads are in the sleep state, the
relative change of 1 mA is lost in the base consump-
tion of 3.5 mA. Another interesting observation is that

the higher consumption period associated with the time
when both threads are active is wider than the 100 ms
duration of threads due to the context switching over-
head. As the trace shows, this time penalty is directly
translated into increased power consumption because the
MCU can not be placed in the lower consuming power
state as early as in the T2 case.
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Figure 8: Current consumption profile of a simple

MOS application with two periodically sleeping threads
(MOS 0.9.5)

6.2.2  Peripheral power state

The base offset in the previous test shows just how
important proper management of peripherals can be. In
almost all existing sensor node platforms, the peripheral
devices, especially the radio and the non-volatile storage,
consume several times more energy than the MCU when
active. Thus, proper management of their power states
should be a primary task of any sensor node OS.

To illustrate the relative impact on the power budget by
the different peripherals in a typical sensor node applica-
tion, we have collected the current consumption traces
of our telosB node running a modified Oscilloscope
application in T2. Driven by a timer, this standard T2 ap-
plication collects ADC samples from a sensor and stores
them in a buffer. When enough samples are collected
(by default 10) the buffer is sent over the radio, to be col-
lected by a BaseStation application for visualization
on a host computer. To demonstrate the arbitration sup-
port in T2 and its impact on the power consumption pro-
file, we have modified the basic application to not only
send the buffer over the radio, but to also store it into the
flash. Since both the radio and the flash on the telosB
platform are using the same SPI bus to connect to the
MCU, this task requires proper arbitration of this shared
resource.

Figure 0] shows the current consumption profile of
the application when compiled without peripheral power
management of the radio. The trace vividly shows how
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Figure 9: Current consumption profile of the origi-
nal Oscilloscope T2 application without peripheral
power management

the complete budget is dominated by the large consump-
tion of the radio chip in receive mode. The increase in
the consumption triggered by the MCU waking up on
the timer interrupts, and the subsequent ADC sampling
is visible as periodic spiking on top of the radio base-
line. Every 2.5 s (i.e. after every ten buffered ADC sam-
ples), the radio switches into transmit mode and sends the
buffer. Because the CC2420 chip consumes less energy
while sending than while receiving, this shows up on the
trace as periodic dips of about 10 mA. The inset shows
this time window with finer resolution. The bulge at the
start of the window is a result of the microcontroller wak-
ing up to service the timer event, the ADC sampling the
sensor and the SPI bus arbiter reconfiguring the USART
device using the ResourceConfigure interface. The
flat line that follows covers the period while the message
is being transferred over the SPI bus to the radio buffer.
After the radio transits into transmit mode and sends the
packet, the consumption is returned to the old level be-
fore the next timer interrupt and ADC sampling occurs.
The profile looks completely different when the power
state of the peripherals in the system is properly man-
aged (figure[I0). Due to the periodic nature of the appli-
cation, the radio in the modified Oscilloscope ap-
plication can be explicitly controlled by the application
code, while all the other shared peripherals, including the
flash chip, are implicitly managed by the corresponding
PowerManager components attached to their arbiters.
This leaves the system into a very low power consuming
state that is only disturbed every 2.5 s. The inset zooms
on one such active phase. In contrast to figure [9} the
peek consummation in the active phase is almost 10 mA
higher because of the simultaneous activity of the radio
and flash chips. But this is more then compensated by the
low consumption in between the activity picks, since the
energy consumption of the system is proportional with

the area below the trace curve.

50 T T T T T T T T T T
— 40 { il
£
g 30 H 20 m
a
2 20 H 0 .
& 2.5 2.51 2.52
H
O 10 H 4
L L 1 J. 1. Il 1 1
O 1 L 1 L 1 L 1 s 1 L 1 L
0 0.5 1 1.5 2 2.5 3

Time [s]

Figure 10: Current consumption profile of a modified
Oscilloscope T2 application with explicit power
management of the radio and implicit power manage-
ment of the flash chip

6.3 Peripheral Management
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Figure 11: Program memory overhead using an arbiter.

Default arbiters have been implemented in T2 in or-
der to promote code reuse between different resources
requiring the same type of arbitration policy. Be-
cause of the semantics associated with the use of the
ResourceController interface, arbiters that imple-
ment it tend to have a much larger overhead (in terms
of both memory and execution cycles) than those that
do not. Since this interface is only intended for use
by shared resources that require a default user (e.g. a
PowerManager), only some of the default arbiters imple-
mented in T2 provide this interface. Four arbiters have
been provided in total, two implementing a first-come-
first serve (FCFS) arbitration policy, and two implement-
ing a round-robin one. One of the arbiters implementing
each policy provides the ResourceController in-
terface (annotated as with a ’4’"")and the other does not.
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Figure 12: Data memory overhead using an arbiter.
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Figure 13: Cycle count overhead of Resource commands
using various Arbiters

Figures[TT]and[I2]show the memory overhead associated
with the inclusion of each of these arbiters, and figures
[[3]and[T4]shows the cycle overhead associated with their
use.

With only two clients connected, Fcfs arbiters con-
sume approximately 18% fewer bytes of ROM (code
memory) than round-robin arbiters, and Simple arbiters
consume 14% fewer bytes than normal ones. Approxi-
mately 18 additional bytes are consumed per client for a
single set of calls to the request () and release ()
commands.

All arbiters have the same intrinsic RAM (data mem-
ory) overhead of 14 bytes for two clients. Fcfs arbiters
require one additional byte for each connected client,
while round-robin arbiters only require 2 additional bytes
every 16 clients.

Just as one would expect, using  the
immediateRequest () command takes the smallest
number of cycles when trying to gain access to a
resource. While this operation is very straightforward (if
the resource is free, give it to the requesting client), most
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Figure 14: Cycle count overhead when making a non-
queing request until a granted event is received
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implementation by different Power Manager Compo-

nents

of the other operations are composed of smaller pieces
which dominate the time it takes for them to complete.
Figure [T4] shows an example of the request command
broken down into all of its parts. For the "+ arbiters,
there is extra overhead associated with the user of the
ResourceContoller releasing its hold.

In additiion to the arbiters, default power managers are
also provided for supporting resources who use three dif-
ferent semantics for starting and stopping them. Ones
that have negligible startup time use an ”Async” inter-
face, while those with long delays use a ”split-phase”
one. Figures [I3] [T6] and [I7] summarize the overhead
associated with including each of the default implemen-
tations provided by T2. The ones annotated with a ”+”
indicate that they implement the time-delayed feature of
powering down the device as outlined in[4.3.1]

7. CONCLUSION

Operating systems are designed to accomplish one
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thing: provide abstractions to underlying hardware re-
sources that make writing programs easier while still
maintaining an acceptable level of performance. Deter-
mining which set of performance metrics are most im-
portant, and building a set of abstractions that can meet
the demands imposed by those metrics is a major chal-
lenge inherent to operating system design.

We have provided a set of three concrete abstractions
for specifically managing memory, energy, and access to
peripheral devices. For memory and peripheral devices,
a combination of static allocation and compile-time vir-
tualization is used in order to isolate services that share
each type of resource from one another. At run time,
ownership of these resources is dynamically passed be-
tween each service, removing the burden of orchestrat-
ing this process from the programmer. By leveraging on
the information provided by performing arbitration on a
particular peripheral device, the power state it should to
be in at any given moment can be determined. Energy
management is then accomplished by automatically con-
trolling the power states of both a microcontroller and all
of its peripheral devices. Interfaces are provided for per-
forming more fine grained power control or overriding
any of the automatic features provided by this abstrac-
tion.

Microbenchmark results are presented evaluating each
of the different resource management techniques used

in an implementation of them for T2. These results are
compared against those of several other sensor node op-
erating systems, and the advantages and disadvantages of
each in the scope of the specific domain for which they
have been designed are discussed.
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